• Title/Summary/Keyword: Search algorithm

Search Result 3,920, Processing Time 0.03 seconds

Adaptive symbiotic organisms search (SOS) algorithm for structural design optimization

  • Tejani, Ghanshyam G.;Savsani, Vimal J.;Patel, Vivek K.
    • Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.226-249
    • /
    • 2016
  • The symbiotic organisms search (SOS) algorithm is an effective metaheuristic developed in 2014, which mimics the symbiotic relationship among the living beings, such as mutualism, commensalism, and parasitism, to survive in the ecosystem. In this study, three modified versions of the SOS algorithm are proposed by introducing adaptive benefit factors in the basic SOS algorithm to improve its efficiency. The basic SOS algorithm only considers benefit factors, whereas the proposed variants of the SOS algorithm, consider effective combinations of adaptive benefit factors and benefit factors to study their competence to lay down a good balance between exploration and exploitation of the search space. The proposed algorithms are tested to suit its applications to the engineering structures subjected to dynamic excitation, which may lead to undesirable vibrations. Structure optimization problems become more challenging if the shape and size variables are taken into account along with the frequency. To check the feasibility and effectiveness of the proposed algorithms, six different planar and space trusses are subjected to experimental analysis. The results obtained using the proposed methods are compared with those obtained using other optimization methods well established in the literature. The results reveal that the adaptive SOS algorithm is more reliable and efficient than the basic SOS algorithm and other state-of-the-art algorithms.

Efficient gravitational search algorithm for optimum design of retaining walls

  • Khajehzadeh, Mohammad;Taha, Mohd Raihan;Eslami, Mahdiyeh
    • Structural Engineering and Mechanics
    • /
    • v.45 no.1
    • /
    • pp.111-127
    • /
    • 2013
  • In this paper, a new version of gravitational search algorithm based on opposition-based learning (OBGSA) is introduced and applied for optimum design of reinforced concrete retaining walls. The new algorithm employs the opposition-based learning concept to generate initial population and updating agents' position during the optimization process. This algorithm is applied to minimize three objective functions include weight, cost and $CO_2$ emissions of retaining structure subjected to geotechnical and structural requirements. The optimization problem involves five geometric variables and three variables for reinforcement setups. The performance comparison of the new OBGSA and classical GSA algorithms on a suite of five well-known benchmark functions illustrate a faster convergence speed and better search ability of OBGSA for numerical optimization. In addition, the reliability and efficiency of the proposed algorithm for optimization of retaining structures are investigated by considering two design examples of retaining walls. The numerical experiments demonstrate that the new algorithm has high viability, accuracy and stability and significantly outperforms the original algorithm and some other methods in the literature.

Development of Destination Optimal Path Search Method Using Multi-Criteria Decision Making Method and Modified A-STAR Algorithm (다기준의사결정기법과 수정 A-STAR 알고리즘을 이용한 목적지 최적경로 탐색 기법 개발)

  • Choi, Mi-Hyeong;Seo, Min-Ho;Woo, Je-Seung;Hong, Sun-Gi
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.6_2
    • /
    • pp.891-897
    • /
    • 2021
  • In this paper, we propose a destination optimal route algorithm for providing route finding service for the transportation handicapped by using the multi-criteria decision-making technique and the modified A-STAR optimal route search algorithm. This is a method to set the route to the destination centering on safety by replacing the distance cost of the existing A-STAR optimal route search algorithm with the safety cost calculated through AHP/TOPSIS analysis. To this end, 10 factors such as road damage, curb, and road hole were first classified as poor road factors that hinder road driving, and then pairwise comparison of AHP was analyzed and then defined as the weight of TOPSIS. Afterwards, the degree of driving safety was quantified for a certain road section in Busan through TOPSIS analysis, and the development of an optimal route search algorithm for the transportation handicapped that replaces the distance cost with safety in the finally modified A-STAR optimal route algorithm was completed.

Adaptive search channel estimate algorithm for ICS Repeater (ICS 중계기를 위한 적응형 탐색 채널추정 알고리듬)

  • Lee, Sang-Soo;Lee, Suk-Hui;Bang, Sung-Il
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.285-286
    • /
    • 2008
  • In this paper, we propose adaptive search channel estimate algorithm. The proposed algorithm is modified LMS algorithm which has a variable step size and parallel convolution. In simulation result, a error estimate accuracy of the proposed algorithm is about -20 dB and general LMS algorithm is about 10 dB. The proposed algorithm is better error estimate accuracy than general LMS algorithm.

  • PDF

Development of Hybrid Vision Correction Algorithm (Hybrid Vision Correction Algorithm의 개발)

  • Ryu, Yong Min;Lee, Eui Hoon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.1
    • /
    • pp.61-73
    • /
    • 2021
  • Metaheuristic search methods have been developed to solve problems with a range of purpose functions in situations lacking information and time constraints. In this study, the Hybrid Vision Correction Algorithm (HVCA), which enhances the performance of the Vision Correction Algorithm (VCA), was developed. The HVCA has applied two methods to improve the performance of VCA. The first method changes the parameters required by the user for self-adaptive parameters. The second method, the CGS structure of the Exponential Bandwidth Harmony Search With a Centralized Global Search (EBHS-CGS), was added to the HVCA. The HVCA consists of two structures: CGS and VCA. To use the two structures, a method was applied to increase the probability of selecting the structure with the optimal value as it was performed. The optimization problem was applied to determine the performance of the HVCA, and the results were compared with Harmony Search (HS), Improved Harmony Search (IHS), and VCA. The HVCA improved the number of times to find the optimal value during 100 repetitions compared to HS, IHS, and VCA. Moreover, the HVCA reduced the Number of Function Evaluations (NFEs). Therefore, the performance of the HVCA has been improved.

Applying Tabu Search to Minimize Mean Tardiness in the Parallel Machine Scheduling (동일한 병렬기계 일정계획에서 평균지연시간의 최소화를 위한 Tabu Search 방법)

  • 전태웅;강맹규
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.18 no.35
    • /
    • pp.107-114
    • /
    • 1995
  • This paper proposes the Tabu Search algorithm to minimize mean tardiness in the parallel machine scheduling problem. The algorithm reduces the computation time by employing restricted neighborhood and produces an efficient solution in this problem.

  • PDF

Efficient Flooding Algorithm for Mobile P2P Systems using Super Peer (슈퍼피어를 이용한 모바일 P2P시스템을 위한 효율적인 플러딩 알고리즘)

  • Kang, So-Young;Lee, Kwang-Jo;Yang, Sung-Bong
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.2
    • /
    • pp.217-221
    • /
    • 2010
  • As the appearances of various new mobile devices and the explosive growth of mobile device users, many researches related to mobile P2P systems have been proceeded actively. In this paper, we propose a new search algorithm for the double-layered super peer system in the mobile environment. For the proposed search algorithm, we divide the entire experiment region into a grid of cells, each of which has the same size. The grid is configured properly by considering the communication range of a mobile device and the number of peers in the system. The proposed search algorithm is a partial flooding search method based on the directions of cells involved with the search. It reduces successfully the network traffic, but shows a low search hit ratio. To enhance the search hit ratio, we introduce a bridge-peer table for a super peer and utilize an n-way search. The experimental results show that the proposed algorithm made an average of 20~30% reduction in the number of message packets over the double-layered system. The success ratio was also improved about 2~5% over the double-layered system.

A Fast Block Matching Motion Estimation Algorithm by using an Enhanced Cross-Flat Hexagon Search Pattern (개선된 크로스-납작한 육각 탐색 패턴을 이용한 고속 블록 정합 움직임 예측 알고리즘)

  • Nam, Hyeon-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.7
    • /
    • pp.99-108
    • /
    • 2008
  • For video compression, we have to consider two performance factors that are the search speed and coded video's quality. In this paper, we propose an enhanced fast block matching algorithm using the spatial correlation of the video sequence and the center-biased characteristic of motion vectors(MV). The proposed algorithm first finds a predicted motion vector from the adjacent macro blocks of the current frame and determines an exact motion vector using the cross pattern and a flat hexagon search pattern. From the performance evaluations, we can see that our algorithm outperforms both the hexagon-based search(HEXBS) and the cross-hexagon search(CHS) algorithms in terms of the search speed and coded video's quality. Using our algorithm, we can improve the search speed by up to 31%, and also increase the PSNR(Peak Signal Noise Ratio) by at most 0.5 dB, thereby improving the video quality.

  • PDF

Parameter-setting-free algorithm to determine the individual sound power levels of noise sources (적응형 파라미터 알고리즘을 이용한 개별 소음원의 음향파워 예측 연구)

  • Mun, Sungho
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • PURPOSES : We propose a parameter-setting-free harmony-search (PSF-HS) algorithm to determine the individual sound power levels of noise sources in the cases of industrial or road noise environment. METHODS :In terms of using methods, we use PSF-HS algorithm because the optimization parameters cannot be fixed through finding the global minimum. RESULTS:We found that the main advantage of the PSF-HS heuristic algorithm is its ability to find the best global solution of individual sound power levels through a nonlinear complex function, even though the parameters of the original harmony-search (HS) algorithm are not fixed. In an industrial and road environment, high noise exposure is harmful, and can cause nonauditory effects that endanger worker and passenger safety. This study proposes the PSF-HS algorithm for determining the PWL of an individual machine (or vehicle), which is a useful technique for industrial (or road) engineers to identify the dominant noise source in the workplace (or road field testing case). CONCLUSIONS : This study focuses on providing an efficient method to determine sound power levels (PWLs) and the dominant noise source while multiple machines (or vehicles) are operating, for comparison with the results of previous research. This paper can extend the state-of-the-art in a heuristic search algorithm to determine the individual PWLs of machines as well as loud machines (or vehicles), based on the parameter-setting-free harmony-search (PSF-HS) algorithm. This algorithm can be applied into determining the dominant noise sources of several vehicles in the cases of road cross sections and congested housing complex.

A Study on the New Motion Estimation Algorithm of Binary Operation for Real Time Video Communication (실시간 비디오 통신에 적합한 새로운 이진 연산 움직임 추정 알고리즘에 관한 연구)

  • Lee, Wan-Bum;Shim, Byoung-Sup;Kim, Hwan-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.4
    • /
    • pp.418-423
    • /
    • 2004
  • The motion estimation algorithm based block matching is a widely used in the international standards related to video compression, such as the MPEG series and H.26x series. Full search algorithm(FA) ones of this block matching algorithms is usually impractical because of the large number of computations required for large search region. Fast search algorithms and conventional binary block matching algorithms reduce computational complexity and data processing time but this algorithms have disadvantages that is less performance than full search algorithm. This paper presents new Boolean matching algorithm, called BCBM(Bit Converted Boolean Matching). Proposed algorithm has performance closed to the FA by Boolean only block matching that may be very efficiently implemented in hardware for real time video communication. Simulation results show that the PSNR of the proposed algorithm is about 0.08㏈ loss than FA but is about 0.96∼2.02㏈ gain than fast search algorithm and conventional Boolean matching algorithm.