• Title/Summary/Keyword: Search Tree

Search Result 633, Processing Time 0.021 seconds

One-time Traversal Algorithm to Search Modules in a Fault Tree for the Risk Analysis of Safety-critical Systems (안전필수 계통의 리스크 평가를 위한 일회 순회 고장수목 모듈 검색 알고리즘)

  • Jung, Woo Sik
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.3
    • /
    • pp.100-106
    • /
    • 2015
  • A module or independent subtree is a part of a fault tree whose child gates or basic events are not repeated in the remaining part of the fault tree. Modules are necessarily employed in order to reduce the computational costs of fault tree quantification. This quantification generates fault tree solutions such as minimal cut sets, minimal path sets, or binary decision diagrams (BDDs), and then, calculates top event probability and importance measures. This paper presents a new linear time algorithm to detect modules of large fault trees. It is shown through benchmark tests that the new method proposed in this study can very quickly detect the modules of a huge fault tree. It is recommended that this method be implemented into fault tree solvers for efficient probabilistic safety assessment (PSA) of nuclear power plants.

Efficient Huffman Decoding using Canonical Huffman Tree (정규 허프만 트리를 이용한 허프만 코드의 효율적인 디코딩)

  • Park, Sang-Ho
    • Journal of the Korea Society of Computer and Information
    • /
    • v.12 no.4
    • /
    • pp.111-117
    • /
    • 2007
  • We present an efficient decoding scheme for Huffman codes in which we use a properties of canonical prefix tree. After Huffman tree is converted to canonical Huffman tree, we represent Huffman tree with minimum information using rules associated with values of nodes in canonical tree. The proposed scheme can reduce memory to store Huffman tree information while maintains the same Processing time. The memory size in order to represent tree information is 2h + 2klogn which is less than those of previous methods. But the number of search is similar to previously proposed techniques.

  • PDF

A Hash based R-Tree for Fast Search of Mass Spatial Data (대용량 공간 데이터의 빠른 검색을 위한 해시 기반 R-Tree)

  • Kang, Hong-Koo;Kim, Joung-Joon;Shin, In-Su;Han, Ki-Joon
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.82-89
    • /
    • 2008
  • 최근, GIS 분야에서 RFID와 GPS 센서 같은 위치 및 공간 데이타를 포함하는 다양한 GeoSensor의 활용으로 수집되는 공간 데이타가 크게 증가하면서, 대용량 공간 데이타의 빠른 처리를 위한 공간 인덱스의 중요성이 높아지고 있다. 특히, 대표적인 공간 인덱스인 R-Tree를 기반으로 검색 성능을 높이기 위한 연구가 활발히 진행되고 있다. 그러나, 기존 연구는 R-Tree에서 노드의 MBR 간의 겹침이나 트리 높이를 어느 정도 줄임으로써 다소 검색 성능을 향상시켰지만, 트리 검색에서 발생하는 불필요한 노드 접근 비용 문제를 효율적으로 해결하지 못하고 있다. 본 논문에서는 이러한 문제를 해결하고 R-Tree에서 대용량 공간 데이타의 빠른 검색을 제공하는 인덱스인 HR-Tree(Hash based R-Tree)를 제시한다. HR-Tree는 트리 검색 없이 R-Tree 리프 노드를 직접 접근할 수 있는 해시 테이블을 이용함으로써 R-Tree의 검색 성능을 높인다. 해시 테이블은 데이타 영역을 차원에 따라 반복적으로 분할한 Partition과 대응되는 R-Tree 리프 노드의 MBR과 포인터들로 구성된다. 각 Partition은 생성 과정에서 고유의 식별 코드를 갖기 때문에 Partition 코드가 주어지면 해시 테이블에서 해당 레코드를 쉽게 접근할 수 있다. 또한, HR-Tree는 R-Tree구조의 변경없이 다양한 R-Tree 변형 구조에 쉽게 적용할 수 있는 장점이 있다. 마지막으로 실험을 통하여 HR-Tree의 우수성을 입증하였다.

  • PDF

k-Interest Places Search Algorithm for Location Search Map Service (위치 검색 지도 서비스를 위한 k관심지역 검색 기법)

  • Cho, Sunghwan;Lee, Gyoungju;Yu, Kiyun
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.4
    • /
    • pp.259-267
    • /
    • 2013
  • GIS-based web map service is all the more accessible to the public. Among others, location query services are most frequently utilized, which are currently restricted to only one keyword search. Although there increases the demand for the service for querying multiple keywords corresponding to sequential activities(banking, having lunch, watching movie, and other activities) in various locations POI, such service is yet to be provided. The objective of the paper is to develop the k-IPS algorithm for quickly and accurately querying multiple POIs that internet users input and locating the search outcomes on a web map. The algorithm is developed by utilizing hierarchical tree structure of $R^*$-tree indexing technique to produce overlapped geometric regions. By using recursive $R^*$-tree index based spatial join process, the performance of the current spatial join operation was improved. The performance of the algorithm is tested by applying 2, 3, and 4 multiple POIs for spatial query selected from 159 keyword set. About 90% of the test outcomes are produced within 0.1 second. The algorithm proposed in this paper is expected to be utilized for providing a variety of location-based query services, of which demand increases to conveniently support for citizens' daily activities.

SQMR-tree: An Efficient Hybrid Index Structure for Large Spatial Data (SQMR-tree: 대용량 공간 데이타를 위한 효율적인 하이브리드 인덱스 구조)

  • Shin, In-Su;Kim, Joung-Joon;Kang, Hong-Koo;Han, Ki-Joon
    • Spatial Information Research
    • /
    • v.19 no.4
    • /
    • pp.45-54
    • /
    • 2011
  • In this paper, we propose a hybrid index structure, called the SQMR-tree(Spatial Quad MR-tree) that can process spatial data efficiently by combining advantages of the MR-tree and the SQR-tree. The MR-tree is an extended R-tree using a mapping tree to access directly to leaf nodes of the R-tree and the SQR-tree is a combination of the SQ-tree(Spatial Quad-tree) which is an extended Quad-tree to process spatial objects with non-zero area and the R-tree which actually stores spatial objects and are associated with each leaf node of the SQ-tree. The SQMR-tree consists of the SQR-tree as the base structure and the mapping trees associated with each R-tree of the SQR-tree. Therefore, because spatial objects are distributedly inserted into several R-trees and only R-trees intersected with the query area are accessed to process spatial queries like the SQR-tree, the query processing cost of the SQMR-tree can be reduced. Moreover, the search performance of the SQMR-tree is improved by using the mapping trees to access directly to leaf nodes of the R-tree without tree traversal like the MR-tree. Finally, we proved superiority of the SQMR-tree through experiments.

A Design for Efficient Similar Subsequence Search with a Priority Queue and Suffix Tree in Image Sequence Databases (이미지 시퀀스 데이터베이스에서 우선순위 큐와 접미어 트리를 이용한 효율적인 유사 서브시퀀스 검색의 설계)

  • 김인범
    • Journal of the Korea Computer Industry Society
    • /
    • v.4 no.4
    • /
    • pp.613-624
    • /
    • 2003
  • This paper proposes a design for efficient and accurate retrieval of similar image subsequences using the multi-dimensional time warping distance as similarity evaluation tool in image sequence database after building of two indexing structures implemented with priority queue and suffix tree respectively. Receiving query image sequence, at first step, the proposed method searches the candidate set of similar image subsequences in priory queue index structure. If it can not get satisfied results, it retrieves another candidate set in suffix tree index structure at second step. The using of the low-bound distance function can remove the dissimilar subsequence without false dismissals during similarity evaluating process between query image sequence and stored sequences in two index structures.

  • PDF

M-tree based Indexing Method for Effective Image Browsing (효과적인 이미지 브라우징을 위한 M-트리 기반의 인덱싱 방법)

  • Yu, Jeong-Soo;Nang, Jong-Ho
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.16 no.4
    • /
    • pp.442-446
    • /
    • 2010
  • In this paper we propose an indexing method supporting the browsing scheme for effective image search on large photo database. The proposed method is based on M-tree, a representative indexing scheme on matrix space. While M-tree focuses on the searching efficiency by pruning, it did not consider browsing efficiency directly. This paper proposes node selection method, node splitting method and node splitting conditions for browsing efficiency. According to test results, node cohesion and clustering precision improved 1.5 and twice the original respectively and searching speed also increased twice the original speed.

A Filtering Method of Trajectory Query for Efficient Process of Combined Query (복합질의의 효율적 수행을 위한 궤적질의 필터링 기법)

  • Ban, Chae-Hoon;Kim, Jong-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.12 no.9
    • /
    • pp.1584-1590
    • /
    • 2008
  • The combined query which consists of the region and trajectory query finds trajectories of moving objects which locate in a certain region. The trajectory query is very informant factor to determine query performance because it processes a point query continuously to find predecessors. This results in bad performance due to revisiting nodes in an index. This paper suggests an efficient method for the combined query based on the 3-dimensional R-tree which has good performance of the region query. The basic idea is that we define the least common search line which enables to search single path and a filtering method based on prediction without revisiting nodes.

A Study on The Improvement of Douglas-Peucker's Polyline Simplification Algorithm (Douglas-Peucker 단순화 알고리듬 개선에 관한 연구)

  • 황철수
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.2
    • /
    • pp.117-128
    • /
    • 1999
  • A Simple tree-structured line simplification method, which exactly follows the Douglas-Peucker algorithm, has a strength for its simplification index to be involved into the hierarchical data structures. However, the hierarchy of simplification index, which is the core in a simple tree method, may not be always guaranteed. It is validated that the local property of line features in such global approaches as Douglas-Peucker algorithm is apt to be neglected and the construction of hierarchy with no thought of locality may entangle the hierarchy. This study designed a new approach, CALS(Convex hull Applied Line Simplification), a) to search critical points of line feature with convex hull search technique, b) to construct the hierarchical data structure based on these critical points, c) to simplify the line feature using multiple trees. CALS improved the spatial accuracy as compared with a simple tree method. Especially CALS was excellent in case of line features having the great extent of sinuosity.

  • PDF

CL-Tree: B+ tree for NAND Flash Memory using Cache Index List (CL 트리: 낸드 플래시 시스템에서 캐시 색인 리스트를 활용하는 B+ 트리)

  • Hwang, Sang-Ho;Kwak, Jong Wook
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.1-10
    • /
    • 2015
  • NAND flash systems require deletion operation and do not support in-place update, so the storage systems should use Flash Translation Layer (FTL). However, there are a lot of memory consumptions using mapping table in the FTL, so recently, many studies have been proposed to resolve mapping table overhead. These studies try to solve update propagation problem in the nand flash system which does not use mapping table. In this paper, we present a novel index structure, called CL-Tree(Cache List Tree), to solve the update propagation problem. The proposed index structure reduces write operations which occur for an update propagation, and it has a good performance for search operation because it uses multi-list structure. In experimental evaluation, we show that our scheme yields about 173% and 179% improvement in insertion speed and search speed, respectively, compared to traditional B+tree and other works.