• Title/Summary/Keyword: Search Speed

Search Result 796, Processing Time 0.024 seconds

Development of the Pattern Matching Engine using Regular Expression (정규 표현식을 이용한 패턴 매칭 엔진 개발)

  • Ko, Kwang-Man;Park, Hong-Jin
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.2
    • /
    • pp.33-40
    • /
    • 2008
  • In various manners, string pattern matching algorithm has been proven for prominence in speed of searching particular queries and keywords. Whereas, the existing algorithms are limited in terms of various pattern. In this paper, regular expression has been utilized to improve efficiency of pattern matching through efficient execution towards various pattern of queries including particular keywords. Such as this research would enable to search various harmful string pattern more efficiently, rather than matching simple keywords, which also implies excellent speed of string pattern matching compared to that of those existing algorism. In this research, the proposed string search engine generated from the LEX are more efficient than BM & AC algorithm for a string patterns search speed in cases of 1000 with more than patterns, but we have got similar results for the keywords pattern matching.

Analysis of Highway Traffic Indices Using Internet Search Data (검색 트래픽 정보를 활용한 고속도로 교통지표 분석 연구)

  • Ryu, Ingon;Lee, Jaeyoung;Park, Gyeong Chul;Choi, Keechoo;Hwang, Jun-Mun
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.1
    • /
    • pp.14-28
    • /
    • 2015
  • Numerous research has been conducted using internet search data since the mid-2000s. For example, Google Inc. developed a service predicting influenza patterns using the internet search data. The main objective of this study is to prove the hypothesis that highway traffic indices are similar to the internet search patterns. In order to achieve this objective, a model to predict the number of vehicles entering the expressway and space-mean speed was developed and the goodness-of-fit of the model was assessed. The results revealed several findings. First, it was shown that the Google search traffic was a good predictor for the TCS entering traffic volume model at sites with frequent commute trips, and it had a negative correlation with the TCS entering traffic volume. Second, the Naver search traffic was utilized for the TCS entering traffic volume model at sites with numerous recreational trips, and it was positively correlated with the TCS entering traffic volume. Third, it was uncovered that the VDS speed had a negative relationship with the search traffic on the time series diagram. Lastly, it was concluded that the transfer function noise time series model showed the better goodness-of-fit compared to the other time series model. It is expected that "Big Data" from the internet search data can be extensively applied in the transportation field if the sources of search traffic, time difference and aggregation units are explored in the follow-up studies.

Optimal Efficiency Control of Wind Generation System Using Fuzzy Logic Control

  • Abo-Khalil, Ahmed G.;Lee, Dong-Choon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1750-1752
    • /
    • 2005
  • This paper presents a variable speed wind generation system where fuzzy logic controllers is used as efficiency optimizer. The fuzzy logic controller increments the machine flux by on-line search to improve the generator efficiency in case of light load. The speed of the induction generator is controlled according to the variation of the wind speed in order to produce the maximum output power The generator reference speed is adjusted according to the optimum tip-speed ratio. The complete control system has been developed by simulation study.

  • PDF

A Hierarchical Packet Classification Algorithm Using Set-Pruning Binary Search Tree (셋-프루닝 이진 검색 트리를 이용한 계층적 패킷 분류 알고리즘)

  • Lee, Soo-Hyun;Lim, Hye-Sook
    • Journal of KIISE:Information Networking
    • /
    • v.35 no.6
    • /
    • pp.482-496
    • /
    • 2008
  • Packet classification in the Internet routers requires multi-dimensional search for multiple header fields for every incoming packet in wire-speed, hence packet classification is one of the most important challenges in router design. Hierarchical packet classification is one of the most effective solutions since search space is remarkably reduced every time a field search is completed. However, hierarchical structures have two intrinsic issues; back-tracking and empty internal nodes. In this paper, we propose a new hierarchical packet classification algorithm which solves both problems. The back-tracking is avoided by using the set-pruning and the empty internal nodes are avoided by applying the binary search tree. Simulation result shows that the proposed algorithm provides significant improvement in search speed without increasing the amount of memory requirement. We also propose an optimization technique applying controlled rule copy in set-pruning.

Real-Time Non-Local Means Image Denoising Algorithm Based on Local Binary Descriptor

  • Yu, Hancheng;Li, Aiting
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.825-836
    • /
    • 2016
  • In this paper, a speed-up technique for the non-local means (NLM) image denoising method based on local binary descriptor (LBD) is proposed. In the NLM, most of the computation time is spent on searching for non-local similar patches in the search window. The local binary descriptor which represents the structure of patch as binary strings is employed to speed up the search process in the NLM. The descriptor allows for a fast and accurate preselection of non-local similar patches by bitwise operations. Using this approach, a tradeoff between time-saving and noise removal can be obtained. Simulations exhibit that despite being principally constructed for speed, the proposed algorithm outperforms in terms of denoising quality as well. Furthermore, a parallel implementation on GPU brings NLM-LBD to real-time image denoising.

On the Performance of Cuckoo Search and Bat Algorithms Based Instance Selection Techniques for SVM Speed Optimization with Application to e-Fraud Detection

  • AKINYELU, Andronicus Ayobami;ADEWUMI, Aderemi Oluyinka
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.3
    • /
    • pp.1348-1375
    • /
    • 2018
  • Support Vector Machine (SVM) is a well-known machine learning classification algorithm, which has been widely applied to many data mining problems, with good accuracy. However, SVM classification speed decreases with increase in dataset size. Some applications, like video surveillance and intrusion detection, requires a classifier to be trained very quickly, and on large datasets. Hence, this paper introduces two filter-based instance selection techniques for optimizing SVM training speed. Fast classification is often achieved at the expense of classification accuracy, and some applications, such as phishing and spam email classifiers, are very sensitive to slight drop in classification accuracy. Hence, this paper also introduces two wrapper-based instance selection techniques for improving SVM predictive accuracy and training speed. The wrapper and filter based techniques are inspired by Cuckoo Search Algorithm and Bat Algorithm. The proposed techniques are validated on three popular e-fraud types: credit card fraud, spam email and phishing email. In addition, the proposed techniques are validated on 20 other datasets provided by UCI data repository. Moreover, statistical analysis is performed and experimental results reveals that the filter-based and wrapper-based techniques significantly improved SVM classification speed. Also, results reveal that the wrapper-based techniques improved SVM predictive accuracy in most cases.

Optimal Design of Direct-Driven Wind Generator Using Mesh Adaptive Direct Search(MADS) (MADS를 이용한 직접구동형 풍력발전기 최적설계)

  • Park, Ji-Seong;An, Young-Jun;Lee, Cheol-Gyun;Kim, Jong-Wook;Jung, Sang-Yong
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.12
    • /
    • pp.48-57
    • /
    • 2009
  • This paper presents optimal design of direct-driven PM wind generator using MADS (Mesh Adaptive Direct Search). Optimal design of the direct-driven PM Wind Generator, combined with MADS and FEM (Finite Element Method), has been performed to maximize the Annual Energy Production (AEP) over the whole wind speed characterized by the statistical model of the wind speed distribution. In particular, the newly applied MADS contributes to reducing the computation time when compared with Genetic Algorithm (GA) implemented with the parallel computing method.

Faster pipe auto-routing using improved jump point search

  • Min, Jwa-Geun;Ruy, Won-Sun;Park, Chul Su
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.12 no.1
    • /
    • pp.596-604
    • /
    • 2020
  • Previous studies on pipe auto-routing algorithms generally used such algorithms as A*, Dijkstra, Genetic Algorithm, Particle Swarm Optimization, and Ant Colony Optimization, to satisfy the relevant constraints of its own field and improve the output quality. On the other hand, this study aimed to significantly improve path-finding speed by applying the Jump Point Search (JPS) algorithm, which requires lower search cost than the abovementioned algorithms, for pipe routing. The existing JPS, however, is limited to two-dimensional spaces and can only find the shortest path. Thus, it requires several improvements to be applied to pipe routing. Pipe routing is performed in a three-dimensional space, and the path of piping must be parallel to the axis to minimize its interference with other facilities. In addition, the number of elbows must be reduced to the maximum from an economic perspective, and preferred spaces in the path must also be included. The existing JPS was improved for the pipe routing problem such that it can consider the above-mentioned problem. The fast path-finding speed of the proposed algorithm was verified by comparing it with the conventional A* algorithm in terms of resolution.

Development of A Plagiarism Detection System Using Web Search and Morpheme Analysis (인터넷 검색과 형태소분석을 이용한 표절검사시스템의 개발에 관한 연구)

  • Hwang, In-Soo
    • Journal of Information Technology Applications and Management
    • /
    • v.16 no.1
    • /
    • pp.21-36
    • /
    • 2009
  • As the World Wide Web (WWW) has become a major channel for information delivery, the data accumulated in the Internet increases at an incredible speed, and it derives the advances of information search technologies. It is the search engine that solves the problem of information overloading and helps people to identify relevant information. However, as search engines become a powerful tool for finding information, the opportunities of plagiarizing have increased significantly in e-Learning. In this paper, we developed an online plagiarism detection system for detecting plagiarized documents that incorporates the functions of search engines and acts in exactly the same way of plagiarizing. The plagiarism detection system uses morpheme analysis to improve the performance and sentence-based comparison to investigate document comes from multiple sources. As a result of applying this system in e-Learning, the performance of plagiarism detection was improved.

  • PDF

A Fast Motion Estimation Algorithm Based on Multi-Resolution Frame Structure (다 해상도 프레임 구조에 기반한 고속 움직임 추정 기법)

  • Song, Byung-Cheol;Ra, Jong-Beom
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.37 no.5
    • /
    • pp.54-63
    • /
    • 2000
  • We present a multi-resolution block matching algorithm (BMA) for fast motion estimation At the coarsest level, a motion vector (MV) having minimum matching error is chosen via a full search, and a MV with minimum matching error is concurrently found among the MVs of the spatially adjacent blocks Here, to examine the spatial MVs accurately, we propose an efficient method for searching full resolution MV s without MV quantization even at the coarsest level The chosen two MV s are used as the initial search centers at the middle level At the middle level, the local search is performed within much smaller search area around each search center If the method used at the coarsest level is adopted here, the local searches can be done at integer-pel accuracy A MV having minimum matching error is selected within the local search areas, and then the final level search is performed around this initial search center Since the local searches are performed at integer-pel accuracy at the middle level, the local search at the finest level does not take an effect on the overall performance So we can skip the final level search without performance degradation, thereby the search speed increases Simulation results show that in comparison with full search BMA, the proposed BMA without the final level search achieves a speed-up factor over 200 with minor PSNR degradation of 02dB at most, under a normal MPEG2 coding environment Furthermore, our scheme IS also suitable for hardware implementation due to regular data-flow.

  • PDF