• Title/Summary/Keyword: Search Ranking

Search Result 173, Processing Time 0.022 seconds

The Blog Ranking Algorithm Reflecting Trend Index (트렌드 지수를 반영한 블로그 랭킹 알고리즘)

  • Lee, Yong-Suk;Kim, Hyoung Joong
    • Journal of Digital Contents Society
    • /
    • v.18 no.3
    • /
    • pp.551-558
    • /
    • 2017
  • The growth of blogs has two aspect of providing various information and marketing. This study collected the rankings of blog posts of large portal using OpenAPI and investigated the features of blogs ranked through the exploratory data analysis technique. As a result of the analysis, it was found that the influence of the blogger and the recent creation date of the post were highly influential factors in the top rank. Due to the weakness of these evaluation algorithms, there was a problem of showing the search results which is concentrated to the power blogger's post. In this study, we propose an algorithm that improves the reliability of content by adding the reliability DB information which is verified by the experts and reflects the fairness of the application of the ranking score through the trend index indicating various public interests. Improved algorithms have made it possible to provide more reliable information in the search results of the relevant field and have an effect of making it difficult to manipulate ranking by illegal applications that increase the number of visitors.

Re-ranking for Search result using association relationship and TF*IDF (연관 관계와 TF*IDF를 이용한 검색 결과 Re-Ranking)

  • Lee, Jung-Hun;Cheon, Suh-H.
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2010.06c
    • /
    • pp.349-352
    • /
    • 2010
  • 질의를 이용한 정보 검색 기술에서 단어 의미의 모호성에 의해 사용자가 검색 하고자 하는 주제 이외의 문서 까지 검색되고 있다. 이러한 문제는 모바일기기의 검색 환경에서 두드러진다. 모바일에서의 검색은 문서의 로딩속도가 느리며 작은 화면에 의해 스크롤이 잦다. 그러므로 원하는 검색 결과가 검색 첫 페이지 이외에 위치하거나, 또는 페이지 하단에 위치할 경우 검색 결과를 확인하는 대에 많은 시간과 노력이 필요하다. 이러한 문제를 해결하기위해선 단어 의미의 모호성을 해결하고 사용자가 검색하고자하는 주제의 검색결과를 검색 상위에 위치시킬 수 있는 방법을 필요로 한다. 이 연구에서는 연관 단어 추출과 TF*IDF를 이용하여, 검색결과를 re-ranking하는 방법을 제시한다.

  • PDF

A study of investigation and improvement to classification for oriental medicine in search portal web site (검색포털 지식검색에 대한 한의학분류체계 조사 및 개선방안 연구)

  • Kim, Chul
    • Journal of the Korean Institute of Oriental Medical Informatics
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2009
  • In these days everyone search the information easily with the Internet as the rapid distribution and active usage of the Internet. The search engines were developed specially to accuracy of information retrieval. User search the information more quickly and variously with them. The search portal system will be embossed with representation and basic services. The Internet user needs the result of text, image and video, knowledge search. The keyword based search is used generally for getting result of the information retrieval and another method is category based search. This paper investigates the classification of knowledge search structure for oriental medicine in market leader of search portal system by ranking web site. As a result, each classification system is unified and there is a possibility of getting up a many confusion to the user who approaches with classification systematic search method. This treatise proposed the improved oriental medicine classification system of internet information retrieval in knowledge search area. if the service provider amends about the classification system, there will be able to guarantee the compatibility of data. Also the proper access path of the knowledge which seeks is secured to user.

  • PDF

Performance Evaluation of Video Recommendation System with Rich Metadata (풍부한 메타데이터를 가진 동영상 추천 시스템의 성능 평가)

  • Min Hwa Cho;Da Yeon Kim;Hwa Rang Lee;Ha Neul Oh;Sun Young Lee;In Hwan Jung;Jae Moon Lee;Kitae Hwang
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.2
    • /
    • pp.29-35
    • /
    • 2023
  • This paper makes it possible to search videos based on sentence by improving the previous research which automatically generates rich metadata from videos and searches videos by key words. For search by sentence, morphemes are analyzed for each sentence, keywords are extracted, weights are assigned to each keyword, and some videos are recommended by applying a ranking algorithm developed in the previous research. In order to evaluate performance of video search in this paper, a sufficient amount of videos and sufficient number of user experiences are re required. However, in the current situation where these are insufficient, three indirect evaluation methods were used: evaluation of overall user satisfaction, comparison of recommendation scores and user satisfaction, and evaluation of user satisfaction by video categories. As a result of performance evaluation, it was shown that the rich metadata construction and video recommendation implementation in this paper give users high search satisfaction.

A Social Search Scheme Considering User Preferences and Popularities in Mobile Environments

  • Bok, Kyoungsoo;Lim, Jongtae;Ahn, Minje;Yoo, Jaesoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.2
    • /
    • pp.744-768
    • /
    • 2016
  • As various pieces of information can be provided through the web, schemes that provide search results optimized for individual users are required in consideration of user preference. Since the existing social search schemes use users' profiles, the accuracy of the search deteriorates. They also decrease the reliability of a search result because they do not consider a search time. Therefore, a new social search scheme that considers temporal information as well as popularities and user preferences is required. In this paper, we propose a new mobile social search scheme considering popularities and user preferences based on temporal information. Popularity is calculated by collecting the visiting records of users, while user preference is generated by the actual visiting information among the search results. In order to extract meaningful information from the search target objects that have multiple attributes, a skyline processing method is used, and rank is given to the search results by combining the user preference and the popularity with the skyline processing result. To show the superiority of the proposed scheme, we conduct performance evaluations of the existing scheme and the proposed scheme.

A Keyword Query Processing Technique of OWL Data using Semantic Relationships (의미적 관계를 이용한 OWL 데이터의 키워드 질의 처리 기법)

  • Kim, Youn Hee;Kim, Sung Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.9 no.1
    • /
    • pp.59-72
    • /
    • 2013
  • In this paper, we propose a keyword query processing technique based on semantic relationships for OWL data. The proposed keyword query processing technique can improve user's search satisfaction by performing two types of associative search. The first associative search uses information inferred by the relationships between classes or properties during keyword query processing. And it supports to search all information resources that are either directly or indirectly related with query keywords by semantic relationships between information resources. The second associative search returns not only information resources related with query keywords but also values of properties of them. We design a storage schema and index structures to support the proposed technique. And we propose evaluation functions to rank retrieved information resources according to three criteria. Finally, we evaluate the validity and accuracy of the proposed technique through experiments. The proposed technique can be utilized in a variety of fields, such as paper retrieval and multimedia retrieval.

Ontology Selection Ranking Model based on Semantic Similarity Approach (의미적 유사성에 기반한 온톨로지 선택 랭킹 모델)

  • Oh, Sun-Ju;Ahn, Joong-Ho;Park, Jin-Soo
    • The Journal of Society for e-Business Studies
    • /
    • v.14 no.2
    • /
    • pp.95-116
    • /
    • 2009
  • Ontologies have provided supports in integrating heterogeneous and distributed information. More and more ontologies and tools have been developed in various domains. However, building ontologies requires much time and effort. Therefore, ontologies need to be shared and reused among users. Specifically, finding the desired ontology from an ontology repository will benefit users. In the past, most of the studies on retrieving and ranking ontologies have mainly focused on lexical level supports. In those cases, it is impossible to find an ontology that includes concepts that users want to use at the semantic level. Most ontology libraries and ontology search engines have not provided semantic matching capability. Retrieving an ontology that users want to use requires a new ontology selection and ranking mechanism based on semantic similarity matching. We propose an ontology selection and ranking model consisting of selection criteria and metrics which are enhanced in semantic matching capabilities. The model we propose presents two novel features different from the previous research models. First, it enhances the ontology selection and ranking method practically and effectively by enabling semantic matching of taxonomy or relational linkage between concepts. Second, it identifies what measures should be used to rank ontologies in the given context and what weight should be assigned to each selection measure.

  • PDF

Preference-based search technology for the user query semantic interpretation (사용자 질의 의미 해석을 위한 선호도 기반 검색 기술)

  • Jeong, Hoon;Lee, Moo-Hun;Do, Hana;Choi, Eui-In
    • Journal of Digital Convergence
    • /
    • v.11 no.2
    • /
    • pp.271-277
    • /
    • 2013
  • Typical semantic search query for Semantic search promises to provide more accurate result than present-day keyword matching-based search by using the knowledge base represented logically. Existing keyword-based retrieval system is Preference for the semantic interpretation of a user's query is not the meaning of the user keywords of interconnect, you can not search. In this paper, we propose a method that can provide accurate results to meet the user's search intent to user preference based evaluation by ranking search. The proposed scheme is Integrated ontology-based knowledge base built on the formal structure of the semantic interpretation process based on ontology knowledge base system.

Evaluation of Mobile Unified Search Contents of Naver and Google Korea (네이버와 구글의 모바일 통합 검색 컨텐츠 평가)

  • Park, So-Yeon
    • Journal of Korean Library and Information Science Society
    • /
    • v.42 no.4
    • /
    • pp.263-280
    • /
    • 2011
  • This study aims to investigate current status of mobile search services of Korean search portals, and analyze mobile unified search contents of Naver and Google Korea. In particular, this study analyzed characteristics of mobile unified search such as number of retrieved documents, collection distribution, and yearly distribution. Also, documents were evaluated in terms of relevance, credibility, and currency. This study compared quality of Naver's unified Web best and unified Web, and Google's best Web documents and Web documents. The correlation between document's ranking and document's relevance was analyzed. The results of this study can be implemented to the portal's effective development of mobile search service.

A Model for Ranking Semantic Associations in a Social Network (소셜 네트워크에서 관계 랭킹 모델)

  • Oh, Sunju
    • The Journal of Society for e-Business Studies
    • /
    • v.18 no.3
    • /
    • pp.93-105
    • /
    • 2013
  • Much Interest has focused on social network services such as Facebook and Twitter. Previous research conducted on social network often emphasized the architecture of the social network that is the existence of path between any objects on network and the centrality of the object in the network. However, studies on the semantic association in the network are rare. Studies on searching semantic associations between entities are necessary for future business enhancements. In this research, the ontology based social network analysis is performed. A new method to search and rank relation sequences that consist of several relations between entities is proposed. In addition, several heuristics to measure the strength of the relation sequences are proposed. To evaluate the proposed method, an experiment was performed. A group of social relationships among the university and organizations are constructed. Some social connections are searched using the proposed ranking method. The proposed method is expected to be used to search the association among entities in ontology based knowledge base.