• Title/Summary/Keyword: Seamless Pipe

Search Result 16, Processing Time 0.026 seconds

Effect of Inner Pressure on the Plastic Deformation Behavior of Seamless Pipe Deformed by Compression Process (압축 가공된 비용접 배관의 소성변형 거동에 미치는 내압의 영향)

  • Seo, W.G.;Lee, M.S.;Son, S.J.;Choi, S.H.
    • Transactions of Materials Processing
    • /
    • v.28 no.4
    • /
    • pp.175-182
    • /
    • 2019
  • In this study, compression process is performed on the seamless E235 pipe using the newly developed compression technology for seamless pipe. Experimental analysis on the heterogeneity of microstructures and mechanical properties of the deformed seamless pipe is conducted. As a result, the correlation between microstructures and mechanical properties are determined. The spatial distribution of effective stress and effective strain developed in the seamless pipe deformed through compression is analyzed using the finite element method (FEM) based on different inner pressure conditions. From the results of the FEM, the impact of the inner pressure on effective stress and effective strain of the seamless pipe deformed through compression can be understood theoretically.

Effect of Manufacturing Process on the Corrosion Properties of 304L Stainless Steel Pipe with 8-inch Diameter (8인치 직경의 304L 스테인리스강관의 부식특성에 미치는 제작공정의 영향)

  • Kim, K.T.;Hur, S.Y.;Chang, H.Y.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.279-286
    • /
    • 2018
  • Austenitic stainless steels used in nuclear power plants mainly use pipes made of seamless pipes, which depend on imports. The manufacturing process and high cost are some of the problems associated with seamless pipes. Therefore, in this study, the corrosion characteristics of the seamless pipe and the SAW pipe were assessed to determine the safety and reliability of the SAW pipe in a bid to replace the seamless pipe. Microstructure was analyzed using an optical microscope and the degree of hardness was measured using a Rockwell B scale. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. Anodic polarization test was performed in deaerated 1% NaCl solution at $30^{\circ}C$ and the U-bend method was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ at $340^{\circ}C$ and 40% NaOH solution at $290^{\circ}C$. Weld metal of the SAW pipe specimen showed relatively high degree of sensitization and intergranular corrosion rate. However, annealing to SAW pipes improved the corrosion properties in comparison to that of the seamless pipe.

An Analytical Study on Moment Response of Welded Steel Pipe for Loading Rate (재학속도에 따른 용접강관의 모멘트 응답특성에 관한 해석적 연구)

  • Chang, Kyong-Ho;Jang, Gab-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.4
    • /
    • pp.37-47
    • /
    • 2011
  • This article aims to analytically research for influence of residual stresses on bending moment responses against welded steel pipes subjected to quasi -static or dynamic loadings. The residual stresses of the welded steel pipe are computed by three-dimensional welding simulation. The bending moment responses of the welded and seamless steel pipes are determined by using three-dimensional dynamic elastoplastic FE analysis as a function of loading rate. It is seen from analytical results that the welded steel pipe shows lower moment response comparing to the seamless steel pipe, and moment difference between seamless and welded steel pipes tends to decrease as loading rate increases.

Multi-sensor Visual inspection for Seamless Steel Pipe´s Straightness

  • Tomoo, Aoyama;Zhang, Y.G.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.88.3-88
    • /
    • 2001
  • In this paper, an on-line multi-sensor visual inspection technique for seamless steel pipe´s straightness is developed. The basic principle of the visual measuring method is detailed. The modeling of visual sensor, measurement system and data processing are presented. In order to test the accuracy of the multi-sensor visual inspection, an experiment inspecting the straightness of a 1500mm long seamless steel pipe is made. The experiment results show that the visual inspection technique can achieve on-line measurement and offers high precision and stability.

  • PDF

Effect of Heat Treatment on the Corrosion Properties of Seamless 304L Stainless Steel Pipe (이음매 없는 304L 스테인리스강관의 부식특성에 미치는 열처리의 영향)

  • Kim, K.T.;Um, S.B.;Kim, Y.S.
    • Corrosion Science and Technology
    • /
    • v.16 no.6
    • /
    • pp.305-316
    • /
    • 2017
  • Austenitic stainless steels have been widely used for various systems of nuclear power plants. Among these stainless steels, small pipes with diameter less than 14 inch have been produced in the form of seamless pipe. Annealing and cooling process during the manufacturing process can affect corrosion properties of seamless stainless steels. Therefore, 12 inch-diameter of as-received 304L stainless steel pipe was annealed and aged in this study. Intergranular corrosion resistance was evaluated by ASTM A262 Practice A, C, and E methods. The degree of sensitization was determined using a DL-EPR test. U-bend method in an autoclave was used to evaluate the SCC resistance in 0.01 M $Na_2S_4O_6$ or 40% NaOH solution at $340^{\circ}C$. As-received specimen showed relatively high degree of sensitization and intergranular corrosion rate. Carbon segregation was also observed near grain boundaries. Annealing treatment could give the dissolution of segregated carbon into the matrix. Aging treatment could induce segregation of carbon and finally form carbides. Microstructural analysis confirmed that high intergranular corrosion rate of the as-received seamless pipe was due to micro-galvanic corrosion between carbon segregation and grains.

Finite Element Analysis of an Elongation Rolling Process for Manufacturing Seamless Pipes (심리스 파이프 제조를 위한 일롱게이션 공정의 유한요소해석)

  • Jung, Seung Hyun;Shin, Yoo In;Song, Chul Ki
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.10
    • /
    • pp.923-928
    • /
    • 2014
  • Elongation rolling process is an intermediate process to make the uniform thickness and uniform surface roughness during producing seamless pipes. The thickness and surface roughness of seamless pipes are generally affected by the distance of rolls and guide shoes, the roll shape, and its cross angle. In this study, finite element analysis for shape forming process is based on the analysis model of elongation rolling mill with guide shoes. This paper shows how the cross angle of the roll, the rolling rpm, and the distance of the guide shoe influence on the outer diameter and the thickness of seamless pipes. The rolling rpm did not give much influence on outer diameter.

Infrared Thermography Characterization of Defects in Seamless Pipes Using an Infrared Reflector

  • Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Lee, Jea-Jung;Kim, Won-Tae;Lee, Bo-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.3
    • /
    • pp.284-290
    • /
    • 2012
  • Infrared thermography uses infrared energy radiated from any objects above absolute zero temperature, and the range of its application has been constantly broadened. As one of the active test techniques detecting radiant energy generated when energy is applied to an object, ultrasound infrared thermography is a method of detecting defects through hot spots occurring at a defect area when 15~100 kHz of ultrasound is excited to an object. This technique is effective in detecting a wide range affected by ultrasound and vibration in real time. Especially, it is really effective when a defect area is minute. Therefore, this study conducted thermography through lock-in signal processing when an actual defect exists inside the austenite STS304 seamless pipe, which simulates thermal fatigue cracks in a nuclear power plant pipe. With ultrasound excited, this study could detect defects on the rear of a pipe by using an aluminium reflector. Besides, by regulating the angle of the aluminium reflector, this study could detect both front and rear defects as a single infrared thermography image.

A study on the Analyses of T-branch Pipe Forming using a Finite Element Method (유한요소법을 이용한 분기배관의 성형해석에 관한 연구)

  • Nam, Jun-Seok;Baek, Chang-Sun;Lim, Kwang-Kyu;SaKong, Seong-Ho;So, Soo-Hyun;Min, Kyung-Tak
    • Fire Science and Engineering
    • /
    • v.21 no.1 s.65
    • /
    • pp.98-105
    • /
    • 2007
  • On this study, we verified the possibilities of making T-branch pipe forming with carbon steel pipes and stainless steel pipes used by common FEM Program(ABAQUS) which are widely used in the fire protection and building construction fields. In this kind of T-branch pipe forming works, in principle, the seamless pipe is used. If the pipe has the seam, the forming face must be the opposite side of the seam. The forming works are carried out by a truncated cone shaped plug. We found that the face slope and the length of plug are the most important factor in pipe forming. Based on the results of forming analyses, we proposed the minimum height and thickness of pipe branch forming.

Mechanical Effects of Pipe Drawing Angle and Reduction Rate on Material (파이프 인발 각도에 따른 기계적 효과 및 재료에 따른 감소율에 관한 연구)

  • Seo, Youngjin
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.12
    • /
    • pp.8-13
    • /
    • 2020
  • Seamless pipes are fabricated by drilling a hole in a cylindrical material and drawing the material to the desired diameter. These pipes are used in environments where high reliability is required. In this study, the pipe drawing process was simulated using DEFORM, a commercial finite element method (FEM) analysis program. The outer diameter of the steel cylinder used herein before drawing was 70 mm, and the target outer diameter was 58 mm. The drawing process consisted of two stages. In this study, the effect of cross-sectional reduction rate on the pipe was investigated by varying the cross-sectional reduction rate in each step to achieve the target outer diameter. The results of this study showed that the first section reduction rate of 26% and the second section reduction rate of 13.9% caused the lowest damage to the material. Moreover, the FEM simulation results confirmed the influence of the drawing die angle on the pipe drawing process. The drawing die angles of 15° in the first step and 9° in the second step caused the least damage to the material.