• Title/Summary/Keyword: Seamless Handoff

Search Result 85, Processing Time 0.024 seconds

A Method of Performance Improvement for AAA Authentication using Fast Handoff Scheme in Mobile IPv6 (Mobile IPv6에서 Fast Handoff기법을 이용한 AAA 인증 성능 향상 방안)

  • Kim Changnam;Mun Youngsong;Huh Eui-Nam
    • Journal of KIISE:Information Networking
    • /
    • v.31 no.6
    • /
    • pp.566-572
    • /
    • 2004
  • In this paper, we define the secure authentication model to provide a mobile node with global roaming service and integrate the Fast Handoff scheme with our approach to minimize the service latency. By starting the AAA(Authentication, Authorization and Account) procedure with Fast Handoff simultaneously when a roaming occurs, authentication latency is reduced significantly and provision of fast and seamless service is possible. The previous works such as IPsec(Internet Protocol Security), RR (Return Routability) and AAA define the procedures performed after the completion of Layer2 Handoff which leads us to study a way of providing the real time and QoS guaranteed service during this period. The proposed scheme is for this goal and when appling it to roaming environment it shows the cost reduction up to 55% and 17% for the case of the MN receiving the FBACK and not respectively before L2 Handoff occurs.

Fast Handoff through Minimizing L2 Delay in Next Generation Mobile System (차세대 이동통신 시스템에서 L2 지연 감소를 통한 빠른 핸드오프)

  • Choi Hye-Eun;Kim Namgi;Yoon Hyunsoo
    • The KIPS Transactions:PartC
    • /
    • v.11C no.7 s.96
    • /
    • pp.1023-1032
    • /
    • 2004
  • It is generally known that handoff delay degrades the QoS by packet drop, packet delay and jitter. Moreover. handoff highly effects on QoS in beyond 3G system because not only micro cells for achieving high capacity and fast moving nodes induce the frequent handoff but also hard handoff must be carried out in OFDM system. Therefore, study on a handoff algorithm for guaranteeing QoS is required. Related works on handoff for beyond 3G system mainly focused on reducing the L3 handoff delay or packet loss. That is, these schemes try to compensate L2 delay rather directly eliminate it. However, remained 1.2 delay degrades QoS, especially delay-sensitive realtime traffic. Therefore, we proposed the seamless handoff algorithmwhich can minimize the L2 handoff delay.

A Fast Handoff Algorithm for IEEE 802.11 WLANs using Dynamic Scanning Time (가변적인 탐색시간을 이용한 IEEE 802.11 무선랜의 고속 핸드오프 알고리듬)

  • 권경남;이채우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2A
    • /
    • pp.128-139
    • /
    • 2004
  • As the Internet usage grows, people want to access the Internet while they are moving. To satisfy this requirement economically, IEEE 802.11 Wireless LANs(WLANs) are rapidly deployed. In order to support mobility, WLANs must provide smooth handoff mechanism. Recent studies show, however, handoff delay of WLANs exceeds 300ms, most of which is due to slow scanning mechanism finding a new AP. With this handoff delay, current WLANs is not suitable to provide seamless realtime interactive services such as VoIP sevice. In this paper, we analyze the current handoff method of IEEE 802.11 and we propose a new handoff algorithm which can decrease time needed for searching a new AP and thus reduce overall handoff time. We show by simulation that the proposed algorithm has shorter handoff delay than current handoff method.

An Enhanced Handoff Support Based on Network-based Mobility Management Protocol (향상된 핸드오프를 지원하는 망 기반의 이동성 지원 방안)

  • Lee, Sung-Kuen;Jeon, You-Chan;Lim, Tae-Hyong;Park, Jin-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.1B
    • /
    • pp.1-9
    • /
    • 2009
  • In this paper, we propose an enhanced handoff support scheme based on network-based mobility management protocol, Proxy Mobile IPv6 (PMIPv6), which is actively standardized by the IETF NETLMM working group. By utilizing the dynamic virtual hierarchy network architecture between mobile access gateways (MAGs), the proposed scheme can support network scalability and reliability to wireless access network. In addition, we propose pre-authentication process based on the policy store (PS) to support a fast and seamless handoff. We evaluate the performance of the proposed scheme in terms of handoff delay and end-to-end delay thru computer simulation. Thru, various computer simulation results, we verified the superior performance of the proposed scheme by comparing with the results of other schemes.

A Fast Authentication Algorithm For Smooth Handoff (Smoothe Handoff 지원을 위한 빠른 인증 알고리즘)

  • Kim, In-Su;Kim, Gi-Cheon;Kim, Hyeon-Gon
    • The KIPS Transactions:PartC
    • /
    • v.9C no.1
    • /
    • pp.17-20
    • /
    • 2002
  • IMT-2000 technologies are divided 3G packet data system that using mobile IP and GPRS that based on the GSM networks. These technologies Push introduce mobile IP to support seamless roaming. In mobile If environments, use AAA server such as RADIUS or DIAMETER to provide authentication service for dial-up computers. This factor is important for mobile nodes. Mobile If require strong authentication between mobile nodes and home agents. We propose application of AAA protocols for smooth handoff mechanism in IMT-2000 environments.

Assessing Efficiency of Handoff Techniques for Acquiring Maximum Throughput into WLAN

  • Mohsin Shaikha;Irfan Tunio;Baqir Zardari;Abdul Aziz;Ahmed Ali;Muhammad Abrar Khan
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.172-178
    • /
    • 2023
  • When the mobile device moves from the coverage of one access point to the radio coverage of another access point it needs to maintain its connection with the current access point before it successfully discovers the new access point, this process is known as handoff. During handoff the acceptable delay a voice over IP application can bear is of 50ms whereas the delay on medium access control layer is high enough that goes up to 350-500ms. This research provides a suitable methodology on medium access control layer of the IEEE 802.11 network. The medium access control layer comprises of three phases, namely discovery, reauthentication and re-association. The discovery phase on medium access control layer takes up to 90% of the total handoff latency. The objective is to effectively reduce the delay for discovery phase to ensure a seamless handoff. The research proposes a scheme that reduces the handoff latency effectively by scanning channels prior to the actual handoff process starts and scans only the neighboring access points. Further, the proposed scheme enables the mobile device to scan first the channel on which it is currently operating so that the mobile device has to perform minimum number of channel switches. The results show that the mobile device finds out the new potential access point prior to the handoff execution hence the delay during discovery of a new access point is minimized effectively.

Fast and Secure Handoff Mechanism for Mobile IPv6 based on IEEE 802.11 (IEEE 802.11 기반의 고속의 안전한 Mobile IPv6 핸드오프 메커니즘)

  • Kang, Hyun-Sun;Park, Chang-Seop
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.2
    • /
    • pp.205-215
    • /
    • 2010
  • It is necessary to provide a fast and secure handover for seamless real-time multimedia services based on IEEE 802.11. In this paper, we propose FMIPv6 handoff protocol integrating L2/L3 layer based on IEEE 802.11 WLAN environment. In that, we propose a hierarchical key management scheme and authentication mechanism for protecting the handover signaling messages. The number of connections with AAA server is minimized for the fast handover. It is also compared and analyzed the handover cost with previous method.

End-to-End Soft QoS Approach for IMS-based Integrated Satellite/Terrestrial Network Architecture

  • Chowdhury, Mostafa Zaman;Jang, Yeong-Min
    • Journal of Satellite, Information and Communications
    • /
    • v.2 no.2
    • /
    • pp.85-91
    • /
    • 2007
  • The satellite networks provide global coverage. The integration of terrestrial networks with a satellite network is the most attractive approach to develop a global communication system. The IP Multimedia Subsystem (IMS) is intended to be the system that will merge the internet with the telecom world. A user with a dual-mode terminal can access both the satellite network and terrestrial network. The seamless handoff between two networks and a user's QoS level is the major issue concerning this integration. In this paper, we propose IMS-based satellite/terrestrial integrated network architecture for a global communication system. Based on the proposed architecture, an inter-network handoff and end-to-end soft QoS procedure is discussed. Our proposed soft QoS scheme is also analyzed to calculate the number of rejected calls.

  • PDF

A rapid transit Handoff processing in Mobile Network using the Extended Macro with the Local Agent

  • Kim, Min-Kyu;Rhew, Hye-Eun;Park, Myong-Soon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2003.05b
    • /
    • pp.1125-1128
    • /
    • 2003
  • Increased use of PDA and Laptop has accelerated the development of wireless networking. With the tendency the need to support efficient and seamless data transmission technique has also been increased. However current mobility management protocol, such as the Mobile If, which is defined in RFC 2002, does not cover well these requirements. To satisfy these requirements, we should reduce Handoff processing time occurred by the movement of MN (Mobile Node) about the other networks. This paper proposes efficient Handoff mechanism on the new Mobile IP architecture using the Extended Macro that is a group organized with subnetworks, and sewed by a new added agent.

  • PDF

Congestion Control Algorithm for TCP Performance Enhancement by Bandwidth Measurement in Vertical Handoffs between Heterogeneous Wireless Networks (이기종 무선 망간 vortical handoff시 대역폭 측정을 통한 TCP 성능향상 혼잡제어 알고리즘)

  • Hwang An-Kyu;Lee Jae-Yong;Jung Whoi-Jin;Kim Byung-Chul
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.43 no.8 s.350
    • /
    • pp.84-90
    • /
    • 2006
  • With the widespread of the wireless Internet and wireless LAN, different wireless technologies such as 3G cellular networks and WLAN will cooperate to support more users and applications with higher data rate over wider areas. When a mobile node moves around in the hybrid networks, it needs to perform seamless vertical handoffs between different wireless networks to provide high performance data transmission. When an application with TCP connection in a mobile node performs a vertical handoff, TCP performance is degraded due to packet losses even though it maintains the previous TCP state information during handoff, because 3G and WLAN have different available bandwidth. In this paper, we propose a new congestion control algorithm for vertical handoff to improve the TCP performance by measuring the rough end-to-end available bandwidth and calculating the slow-start threshold. By ns-2 simulation, we show that the proposed algorithm enhances the TCP performance during vertical handoffs compared to the previous algorithms.