• Title/Summary/Keyword: Sealing surface

Search Result 241, Processing Time 0.028 seconds

THE EFFECTS OF SEALING ON THE PLASMA-SPRAYED OXIDE-BASED COATINGS

  • Kim, Hyung-Jun;Sidoine Odoul;Kweon, Young-Gak
    • Proceedings of the KWS Conference
    • /
    • 2002.10a
    • /
    • pp.53-58
    • /
    • 2002
  • Electrical insulation and mechanical properties of the plasma sprayed oxide ceramic coatings were studied before and after the sealing treatment of the ceramic coatings. Plasma sprayed A1$_2$O$_3$-TiO$_2$ coating as the reference coating was sealed using three commercial sealants based on polymer. Penetration depth of the sealants to the ceramic coating was evaluated directly from the optical microscope using a fluorescent dye. It is estimated that the penetration depth of the sealants to the ceramic coating is from 0.2 to 0.5 mm depending on the sealants used. The preliminary test results with a DC puncture tester imply that the dielectric breakdown voltage mechanism of plasma sprayed ceramic coatings has been determined to be a corona mechanism. Dielectric breakdown voltage of the as-sprayed and as-ground samples have shown a linear trend with regard to the thickness showing an average dielectric strength of 20 kV/mm for the thickness scale studied. It is also shown that grinding the coating before sealing and adding fluorescent dye do not agent the penetration depth of sealants. All of the microhardness, two-body abrasive wear resistance, bond strength, and surface roughness of the ceramic coating after the sealing treatment are improved. The extent of improvement is different from the sealants used. However, three-point bending stress of the ceramic coating after the sealing treatment is decreased. This is attributed to the reduced micro-crack toughening effect since the cracks propagate easily through the lamellar of the coating without crack deflection and/or branching after the sealing treatment.

  • PDF

Glass to Metal Bonding by Electric Field (전장에 의한 유리와 금속의 접합)

  • 정우창;김종희
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.70-78
    • /
    • 1983
  • This paper discusses the application of Si-Borosilicate glass sealing to a new sealing method which utilizes a large electrostatic field to pormote bound formation at relatively low temperature. Bonding mechanism and the effect of bonding time bonding temperature glass thickness and surface roughness on the bond strength were investigated. Application of a de voltage across bonded specimen gradually produced a layer of glass adjacent silicon which was depleted of mobile ions. As a consequence a n increasingly larger fraction of the applied voltage appeared across the depleted region and very large electric field resulted This field accompanyed by large electrostatic force acted as driving force the of strong bond. And stronger bond was formed with increasing bonding time and temperature. A low temperature preoxidation is advantageous for the Si surface having a rougher surface finish that 1 microinch.

  • PDF

Numerical Study on the Magnetic Flux Distribution of a Magnetic Fluid Seal (자성유체시일의 자속분포에 관한 수치적 연구)

  • 김청균;차백순;민진기;정성천
    • Tribology and Lubricants
    • /
    • v.14 no.3
    • /
    • pp.32-38
    • /
    • 1998
  • This paper presents the magnetic flux distributions of a ferrofluid seal at the sealing gap between the pole pieces and the rotating shaft. The optimized shape of pole pieces has been determined by using the computer simulations. The computed results indicate that the sloped pole piece of 27$^{\circ}$ shows good flux distributions compared with that of the conventional flat pole pieces and may reduce frictional heats due to a reduced surface contact areas of magnetic fluids.

Fabrication of Triode-Type CNT-FED by A Screen-printing of CNT Paste

  • Kwon, Sang-Jik;Shon, Byeong-Kyoo;Chung, Hak-June;Lee, Sang-Heon;Choi, Hyung-Wook;Lee, Jong-Duk;Lee, Chun-Gyoo
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.866-869
    • /
    • 2004
  • A carbon nanotube field emission display(CNT FED) panel with a 2 inch diagonal size was fabricated by using a screen printing of a prepared photo-sensitive CNT paste and vacuum in-line sealing technology. After a surface treatment of the patterned CNT, only the carbon nanotube tips are uniformly exposed on the surface. The diameter of the exposed CNTs are usually about 20nm. The sealing temperature of the panel was around 390 $^{\circ}C$ and the vacuum level was obtained with $1.4{\times}10^{-5}$torr at the sealing. The field emission properties of the diode type CNT FED panel were characterized Now, we are developing a triode type CNT FED with a self-aligned gate-emitter structure.

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙 실링 자동화 장비 개발에 관한 연구)

  • Lee Jeong-Ho;Lee Jae-Kwon;Kim Min-Jae;Kim Young-Suk;Cho Moon-Young;Lee Jun-bok
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.539-542
    • /
    • 2002
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

  • PDF

A Study on the Development of an Automated Pavement Crack Sealer (도로면 크랙실링 자동화 로봇의 프로토타입 개발에 관한 연구)

  • Lee Jeong-Ho;Yu Hyun-Seok;Kim Young-Suk;Lee Jun-Bok;Cho Moon-Young
    • Korean Journal of Construction Engineering and Management
    • /
    • v.5 no.2 s.18
    • /
    • pp.162-171
    • /
    • 2004
  • Crack sealing is a maintenance procedure that is commonly used to reduce pavement degradation. If cracks in pavements are not sealed, surface water penetration can reduce the strength of the sub-base layers, which can result in increased deflections of the pavement. Reduced strength of the sub-base also accelerates the deterioration of the surface, due to development of greater cracking and potholes. Crack sealing is performed to reduce water and debris penetration, thereby helping to maintain pavement structural capacity and limiting future degradation. The process of sealing cracks in pavements is however dangerous, costly, and labor-intensive operation. Labor turnover and training are increasing problems related to crack sealing crews, and as traffic volumes increase. Automating crack sealing can reduce labor and road user costs, improve work quality, and decrease worker exposure to roadway hazards. The main objective of this research is to develop an automated system for sealing cracks in pavement. Extension of the algorithms and tools presented in this research is also recommended for future study.

Role of Added Metal Oxide in the Adherence Mechanism of Low Melting Glass to Several Metal Seals (저융점유리와 각종금속과의 봉착기구에 있어서 금속산화물의 역할)

  • 정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.11 no.1
    • /
    • pp.3-9
    • /
    • 1974
  • The role of added metal oxide in the adherence mechanism of low melting glass to several metal plates such as oxygen free high conducting copper, low carbon steel, chrominum galvanized on copper, and stainless steel was investigated. The metal oxide which added to glass were cupric oxide, ferric oxide, chromic oxide, and stainless steel oxide. The glass to that various metla oxide were added, sealed with several metal plates in the electric furnace at $650^{\circ}C$ for 5 minutes. The results as follows; 1) The interfacial reaction was promoted and strong chemical bonding with glass and metals by which the surface energy was decreased showed excellent sealing by addition of metal oxide. 2) When the interfacial reaction of glass and metals was promoted by addition of metal oxide found out that various adhernece mechanism were related to the sealing. 3) When the amount of metal oxide addition was 3-5% the excellent sealing was achieved.

  • PDF

AN ANALYSIS OF THE FACTORS AFFECTING THE HYDRAULIC CONDUCTIVITY AND SWELLING PRESSURE OF KYUNGJU CA-BENTONITE FOR USE AS A CLAY-BASED SEALING MATERIAL FOR A HIGH-LEVEL WASTE REPOSITORY

  • Cho, Won-Jin;Lee, Jae-Owan;Kwon, Sang-Ki
    • Nuclear Engineering and Technology
    • /
    • v.44 no.1
    • /
    • pp.89-102
    • /
    • 2012
  • The buffer and backfill are important components of the engineered barrier system in a high-level waste repository, which should be constructed in a hard rock formation at a depth of several hundred meters below the ground surface. The primary function of the buffer and backfill is to seal the underground excavation as a preferred flow path for radionuclide migration from the deposited high-level waste. This study investigates the hydraulic conductivity and swelling pressure of Kyungju Ca-bentonite, which is the candidate material for the buffer and backfill in the Korean reference high-level waste disposal system. The factors that influence the hydraulic conductivity and swelling pressure of the buffer and backfill are analyzed. The factors considered are the dry density, the temperature, the sand content, the salinity and the organic carbon content. The possibility of deterioration in the sealing performance of the buffer and backfill is also assessed.

Stain removal on ivory using cyclododecane as a hydrophobic sealing agent

  • Lee, Hyun-Sook
    • KOMUNHWA
    • /
    • no.66
    • /
    • pp.87-112
    • /
    • 2005
  • Stain removal on ivory has been, for a long time, considered an undesirable treatment in conservation field because ivory is hygroscopic and anisotropic, having different physical properties in different directions. Cyclododecane, which sublimes at room temperature, has been investigated for its use in conservation field since 1995, as a reversible temporary consolidant, sealing agent or coating, water repellent, and barrier layer. This research aims to remove stains on ivory, temporarily protecting the none-stained area or painted area from methanol, acetone or the aqueous cleaning system using cyclododecane as a hydrophobic sealing agent. This research also aims to obtain information regarding whether cyclododecane can be safely and effectively used on archaeological wet ivory. Melted cyclododecane and saturated solutions of cyclododecane in mineral spirits, and hexanes were applied to ivory samples. Application methods, working properties of cyclododecane on ivory, and effect of cyclododecane coating on moisture content of wet ivory were evaluated. The sealing layer formed by molten cyclododecane or by saturated cyclododecane solution in hexane or saturated cyclododecane solution in mineral spirits did not form a secure contact with the surface of the highly polished ivory. The sealing formed with two different layers, in which saturated cyclododecane solution in hexane was applied initially and then molten cyclododecane was applied over the first layer, was found to securely protect the painted area. When the wet samples were kept in 100% RH environments for a month, active mold growths were observed except in the samples sealed with molten cyclododecane. In conclusion, cyclododecane was an efficient hydrophobic sealing agent to protect painting area while cleaning stains on ivory. It also prevented mold growing on wet ivory and wet bone. Evenness of cyclododecane film on ivory will be determined in UV light. Analytical techniques will include visual observation, polarized light microscopy, Scanning Electron Microscope, and Gas Chromatography.

  • PDF