• 제목/요약/키워드: Sealing pressure

Search Result 262, Processing Time 0.081 seconds

Analysis of Split Magnetic Fluid Plane Sealing Performance

  • Zhang, Hui-tao;Li, De-cai
    • Journal of Magnetics
    • /
    • v.22 no.1
    • /
    • pp.133-140
    • /
    • 2017
  • Split magnetic fluid sealing is a combination of magnetic fluid rotary and plane sealing. Using the theory of equivalent magnetic circuit design as basis, the author theorized the pressure resistance performance of magnetic fluid plane sealing. To determine the pressure resistance of magnetic fluid plane sealing, the author adopted the method of finite element analysis to calculate the magnetic field intensity in the gap between plane sealing structures. The author also analyzed the effect of different sealing gaps, as well as different ratios between the sealing gap and tooth and solt width, on the sealing performance of split magnetic fluid. Results showed that the wider the sealing gap, the lower the sealing performance. Tooth width strongly affects sealing performance; the sealing performance is best when the ratio between tooth width and sealing gap is 2, whereas the sealing performance is poor when the ratio is over 8. The sealing performance is best when the ratio between the solt width and sealing gap is 4, indicating a slight effect on sealing performance when the ratio between the solt width and sealing gap is higher. Theoretical analysis and simulation results provide reference for the performance evaluation of different sealing equipment and estimation of critical pressure at interface failure.

A Study on the Sealing Characteristics of O-rings in Gas Pressure Vessel (O-링이 장착된 가스압력용기의 밀봉특성에 관한 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.51-57
    • /
    • 2003
  • This paper presents the temperature distribution and deformation characteristics of O-ring groove geometry in which is strongly related the sealing performance of pressure vessels. A working gas in pressure vessel may be heated by a heater and pressurized by a gas compressor. Thus, the pressure vessel should keep high Pressure and temperature for a limited working period. For these operation conditions, the working gas in pressure vessels should not leak to the air by two O-rings with a rectangular groove. The FEM computed results indicate that the thermal and mechanical properties of metal sealing material is very important for stopping a leakage of hot gas in a vessel. Based on the results, high thermal conductive and low mechanical strength material is recommended as a metal sealing one. This may improve the sealing characteristics of O-ring sealing mechanism with a rectangular groove, which reduces the sealing gap between a flange and a cylinder and the width of O-ring groove.

  • PDF

An Experimental Study on Sealing Improvements of Non-Contact Type Seal for Oil Mist Lubrication

  • Na, Byung-Chul;Chun, Keyoung-Jin;Han, Dong-Chul
    • KSTLE International Journal
    • /
    • v.3 no.2
    • /
    • pp.79-83
    • /
    • 2002
  • Sealing an oil-air mixture plays important roles to have an enhanced lubrication for high speed spindle. High speed spindle requires non-contact type of sealing mechanism. Current work emphases on the investigation of the air jet effect on the protective collar type labyrinth seal. To improve the sealing capability of conventional labyrinth seal, air jet was injected against through the leakage flow, It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement The sealing effects of the leakage clearance and the air jet magnitude are studied in various parameters. The results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient Effect of sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger.

Comparison of chemical resistance properties of anodized film according to anodized sealing treatment method of Al6061 alloy (Al6061 합금의 양극산화 봉공 처리 방법에 따른 양극산화 피막의 내화학 특성 비교)

  • Young Uk Han;Sang Sub Lee;Jun Seok Lee;Gibum Jang;Sung Youl Cho
    • Journal of Surface Science and Engineering
    • /
    • v.57 no.3
    • /
    • pp.201-207
    • /
    • 2024
  • This study compared the chemical resistance properties according to various sealing treatment methods for the anode film formed during the anodization process of Al6061 alloy. Al6061 aluminum was used in four different sealing treatment methods: boiling water sealing, lithium sealing, nickel sealing, and pressurized sealing, and each sample was evaluated for corrosion resistance through a 5% HCl bubble test and the microstructure was observed through a scanning electron microscope(SEM). According to the results, corrosion resistance increased as time and temperature increased in all sealing treatment methods. Relatively, corrosion resistance was high in the order of boiling water sealing, lithium sealing, nickel sealing, and pressure sealing, and the best corrosion resistance was found in pressure sealing. These research results can be helpful in selecting a process necessary to improve the efficiency and performance of anodizing process in the industrial field using aluminum alloys.

On the Contact Behavior Analysis of the O-ring Depending on the Contact Surface Profiles (접촉면 형상에 따른 O-링의 접촉거동해석에 관한 연구)

  • Kim Chung Kyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.2 s.233
    • /
    • pp.169-175
    • /
    • 2005
  • In this paper, the contact stress and strain distributions in elastomer O-ring seals have been analyzed using a non-linear finite element method. The stress behavior of PTFE materials is assumed as Odgen model because the sealing clearance between the flange and the surface of the O-ring is not small and the sealing pressure of working fluids covers from the atmospheric pressure to high pressure of 15MPa. The contact normal force and stress in wavy O-rings in which is developed for this analysis are uniformly distributed along the flange and the wall of the rectangular groove. And the normal sealing forces are also kept high compared to other contact sealing models such as the conventional O-ring and X-ring, Thus, the FEM computed results indicate that the sealing characteristic of wavy O-rings is food compared with other contact seals.

Long Term Reliability of Fluroelastomer (FKM) O-ring after Exposure to High Pressure Hydrogen Gas

  • Choi, Myung-Chan;Lee, Jin-Hyok;Yoon, Yu-mi;Jeon, Sang-Koo;Bae, Jong-Woo
    • Elastomers and Composites
    • /
    • v.55 no.4
    • /
    • pp.270-276
    • /
    • 2020
  • The long-term durability of an FKM O-ring used as parts of a hydrogen station was investigated by exposing it to high-pressure gaseous hydrogen for 1, 3, and 7 days at room temperature. Changes in its sealing force were subsequently measured at 150℃ using intermittent compression stress relaxation (CSR). No changes in the tensile properties of FKM O-ring were observed, but its initial and overall sealing forces at 150℃ significantly decreased with increasing exposure time to hydrogen gas. Microvoid formation in the FKM O-ring upon exposure to high-pressure hydrogen was minimized over time after the ring was exposed to atmospheric pressure at room temperature, which prevented changes in its tensile properties. However, applying heat accelerated FKM O-ring oxidation, which decreased its sealing force. These results indicated that identifying changes in the sealing force of rubber materials using intermittent CSR is not sufficient for monitoring changes in mechanical properties under high-pressure hydrogen atmospheres; however, it is suitable for evaluating the long-term durability of sealing materials for hydrogen station applications under similar conditions.

FE Analysis on the Sealing Characteristics of Multi-Contact Packing for Swivel Joint (스위블 연결구용 멀티접촉패킹의 밀봉특성에 관한 유한요소해석)

  • Kim, Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.18 no.4
    • /
    • pp.51-55
    • /
    • 2014
  • This paper was analyzed for a sealing characteristics of single lip contact type o-ring and multiple lip contact type packing for a swivel joint using the finite element method. According to the FE analysis, a conventional o-ring produces a maximum contact normal stress of 2.5MPa for a supplied LP gas pressure of 1.8MPa, which is related to the sealing performance. But, a sealing performance of newly invented multi-lip packing produces a maximum contact normal stress of 3.01MPa, which is 20.4% higher than that of a conventional o-ring. And an extrusion of a conventional o-ring, which is strongly related to the sealing endurance safety, was occurred at a supplied gas pressure of 1.62MPa. But, a multi-lip packing does not produce up to the gas pressure of 1.8MPa. This means that a new type of multi-lip packing may have excellent sealing characteristics because of no extrusion for high gas pressure. Thus, multi-lip packing with multiple lip contacts may be useful for high sealing and endurance safety compared to that of the conventional o-ring with a single lip contact.

On the Sealing Force of Perfluoroelastomer O-rings Including Temperature Effects (온도를 고려한 FFKM O-링의 밀봉력에 관한 연구)

  • 김청균;조승현
    • Tribology and Lubricants
    • /
    • v.20 no.5
    • /
    • pp.278-283
    • /
    • 2004
  • O-ring seal is widely used for sealing pressure vessels and oil containers in various applications of mechanical equipments. The doughnut shape of the O-ring is very important components in most of the system assembly of mechanical apparatus. This paper presents the sealing force of a pressurized perfluoroelastomer O-ring, which is very important contact seal in sealing the semiconductor equipment. The sealing pressure is measured by experimental method and analyzed numerically by using the non-linear MARC finite element program. The seal tester is made to measure the contact force and displacement of the O-ring with an automatic control system of the working temperature. The results show the reasonable agreements between the computed FEM results and measured ones when the operating temperature is moderate temperature. But the compared values between the computed and tested results show a difference because of the increased temperature, which is related to the non-linear parameter of the O-ring material.

Assembly Analysis for Evaluation of Sealing in PEMFC Stack (고분자 전해질 연료전지 스택의 시일링 평가를 위한 체결 해석)

  • Kim, Dae-Young;Kim, Jung-Min;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.68-75
    • /
    • 2010
  • The one of the major problems in the development of PEMFC was regarding to the assurance of sealing on stack. The failure on the sealing creates the problems of fuel leakage, mixing, internal combustion, damage on parts and can be a direct reason for the degrading the efficiency of fuel cell. This paper studies on the analytical approach for improving the contacting pressure distribution on the gasket at the evaluation on the sealing of fuel cell stack. So, the assembly analysis on multi layered fuel cell stack was performed. The research on the simplification of finite element model was performed for three dimensional analysis at the multi layered state. The improved contact pressure distribution was obtained through the case studies on gasket for better sealing. In addition, the number of the cell was determined for the effective analysis and the structural characteristics were evaluated based on this research.

Discussion on the Sealing Gap Behavior of Rocket Motor Connection with the Structural Design Parameters (추진기관 기밀체결부의 형상설계변수에 따른 기밀조립 갭의 영향평가)

  • Kim, Seong-eun;Ro, Young-hee;Hwang, Tae-kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.517-520
    • /
    • 2017
  • In this paper, we represented the structural design parameter effect on the sealing gap behavior of solid rocket motor case and nozzle connection under penetrated pressure through the sealing path between insulation rubber and the ablative FRP bonded on the inside convergent wall of nozzle. It is important to keep the good sealing capacity during all the combustion time of SRM. To achieve the crucial role of sealing system of SRM, designers must consider design factors for stable sealing clearance gap as the nearly unchanged initial design state as possible for sufficient compression rate of O-ring under sealing gap pressure.

  • PDF