• Title/Summary/Keyword: Sealing

Search Result 1,294, Processing Time 0.038 seconds

Discussion on the Sealing Gap Behavior of Rocket Motor Connection with the Structural Design Parameters (추진기관 기밀체결부의 형상설계변수에 따른 기밀조립 갭의 영향평가)

  • Kim, Seong-eun;Ro, Young-hee;Hwang, Tae-kyung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.517-520
    • /
    • 2017
  • In this paper, we represented the structural design parameter effect on the sealing gap behavior of solid rocket motor case and nozzle connection under penetrated pressure through the sealing path between insulation rubber and the ablative FRP bonded on the inside convergent wall of nozzle. It is important to keep the good sealing capacity during all the combustion time of SRM. To achieve the crucial role of sealing system of SRM, designers must consider design factors for stable sealing clearance gap as the nearly unchanged initial design state as possible for sufficient compression rate of O-ring under sealing gap pressure.

  • PDF

Prediction of the Edge Sealing Shape on the Vacuum Glazing Using the Nonlinear Regression Analysis (비선형회귀분석을 이용한 진공유리 모서리 접합단면 형상예측)

  • Kim, Youngshin;Jeon, Euysik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.3
    • /
    • pp.1016-1021
    • /
    • 2013
  • While using the hydrogen mixture gas torch, the glass edge sealing and the shape of the edge sealing parts is affected by many parameters such as flow rate of gas, traveling speed of torch, distance between glass and torch. As the glass edge sealing shape have effects on the insulation and airtightness and strength of the glass panel; the sealing shapes are predicted according to the process parameters. The paper highlight the nonlinear regression equations of the cross-sectional shape of the sealing shape according to the parameters, that is experimentally predicted later compared and verified the equation with the experimental result.

A STUDY OF THE DURABILITY OF DENTINAL TUBULE SEALING EFFECTS OF DENTIN BONDING AGENTS (상아질 접착제의 상아세관 밀봉지속효과에 관한 연구)

  • Kim, Eui-Seong;Park, Dong-Soo
    • Restorative Dentistry and Endodontics
    • /
    • v.19 no.1
    • /
    • pp.180-193
    • /
    • 1994
  • The purpose of this study was to observe the sealing ability and durability of All-Bond 2, Gluma Bonding System, Scotch bond 2 and Superbond D-liner which are dentin bonding agents used as desensitizing agents. The durability of the sealing ability of the materials were compared after 0, 140, 420, 840 tooth brushing strokes. 120 extracted teeth were divided into 5 groups and the agents were applied to the exposed dentin. No agents was applied on group I, the control group. Each specimen went through thermocycling from $5^{\circ}$ to $55^{\circ}C$, 200 times. Each group was devide into 4 subgroups and artificial tooth brushing strokes were done for 0, 140, 420, 840 times. Finally the specimens were stored in 0.5 % methylene blue solution for 24 hours in a incubator set at $37^{\circ}C$. The tooth were sectioned perpendicular to the long axis and the dye penetration ratio to the pulp was measured. The following results were obtained. 1. All four dentin bonding agents initially showed excellent sealing ability. 2. All-bond 2, Gluma Bonding System and Superbond D-liner showed durability of dentinal tubule sealing effect after 840 strokes(6-week) artificial tooth brushing. 3. Scotchbond 2 showed a significant decrease in sealing ability after 420 strokes(3-week) artificial tooth brushing. (P<0.05).

  • PDF

An investigation into the thermo-elasto-hydrodynamic effect of notched mechanical seals

  • Meng, Xiangkai;Qiu, Yujie;Ma, Yi;Peng, Xudong
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2173-2187
    • /
    • 2022
  • A 3D thermo-elasto-hydrodynamic model is developed to analyze the sealing performance of a notched mechanical seal applied in the reactor coolant pump. In the model, the generalized Reynolds equation, the energy equation coupled with notch heat balance equation, the heat conduction equations, and the deformation equations of the sealing rings are iteratively solved by the finite element method. The film pressure and temperature distribution are obtained, and the deformation of the sealing rings is revealed to study the mechanism of the notched mechanical seals. A parameterized study is conducted to analyze the sealing performance under different operating conditions. As a comparison, the sealing performance of non-notched seals is also studied. The results show that the hydrostatic effect is dominant in the load-carrying capacity of the fluid film due to the radial mechanical and thermal deformations. The notch can cool the fluid film and influence the thermal deformation of seal rings. The sealing performance is sensitive to the pressure difference, ambient temperature, and rotational speed. It is suggested to set the notches on the softer sealing rings to acquire the greater hydrodynamic effect. Compared with the non-notched, the notched end face holds a better lubrication performance, especially under lower rotational speed.

Effect of Sealing on the Corrosion Resistance of Plasma-Sprayed Alumina Coatings (실링이 플라즈마 스프레이 코팅된 알루미나 코팅재의 내부식성에 미치는 영향)

  • Kwon, Eui Pyo;Kim, Se Woong;Lee, Jong Kweon
    • Korean Journal of Materials Research
    • /
    • v.32 no.10
    • /
    • pp.442-447
    • /
    • 2022
  • Sealing treatment is a post-surface treatment of the plasma spray coating process to improve the corrosion resistance of the coating material. In this study, the effect of the sealing on the corrosion resistance and adhesive strength of the plasma spray-coated alumina coatings was analyzed. For sealing, an epoxy resin was applied to the surface of the coated specimen using a brush. The coated specimen was subjected to a salt spray test for up to 48 hours and microstructural analysis revealed that corrosion in the coating layer/base material interface was suppressed due to the resin sealing. Measurement of the adhesive strength of the specimens subjected to the salt spray test indicated that the adhesive strength of the sealed specimens remained higher than that of the unsealed specimens. In conclusion, the resin sealing treatment for the plasma spray-coated alumina coatings is an effective method for suppressing corrosion in the coating layer/base material interface and maintaining high adhesive strength.

Microtensile bond strength of resin inlay bonded to dentin treated with various temporary filling materials (임시 가봉재가 상아질과 레진 인레이의 미세인장 결합 강도에 미치는 영향)

  • Kim, Tae-Woo;Lee, Bin-Na;Choi, Young-Jung;Yang, So-Young;Chang, Hoon-Sang;Hwang, Yun-Chan;Hwang, In-Nam;Oh, Won-Mann
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.5
    • /
    • pp.419-424
    • /
    • 2011
  • Objectives: This study was aimed to determine the effects of temporary sealing materials on microtensile bond strength between resin-coated dentin and resin inlay and to compare the bonding effectiveness of delayed dentin sealing and that of immediate dentin sealing. Materials and Methods: The teeth were divided into 4 groups: group 1, specimens were prepared using delayed dentin sealing after temporary sealing with zinc oxide eugenol (ZOE); group 2, specimens were prepared using immediate dentin sealing and ZOE sealing; group 3, specimens were prepared using immediate dentin sealing and Dycal (Dentsply) sealing; group 4, specimens were prepared using immediately sealed, and then temporarily sealed with a resin-based temporary sealing material. After removing the temporary sealing material, we applied resin adhesive and light-cured. Then the resin inlays were applied and bonded to the cavity with a resin-based cement. The microtensile bond strength of the sectioned specimens were measured with a micro-tensile tester (Bisco Inc.). Significance between the specimen groups were tested by means of one-way ANOVA and multiple Duncan's test. Results: Group 1 showed the lowest bond strength, and group 4 showed the highest bond strength (p < 0.01). When temporary sealing was performed with ZOE, immediate dentin sealing showed a higher bonding strength than delayed dentin sealing (p < 0.01). Conclusions: Based on these results, immediate dentin sealing is more recommended than delayed dentin sealing in bonding a resin inlay to dentin. Also, resin-based temporary sealing materials have shown the best result.

Evaluation of Crack Resistance of Cold Joint as Usage of Sealing Tape (실링 테이프 적용에 따른 시공조인트 균열 저항성 평가)

  • Lee, JaeJun;Lee, Seonhaeng;Kim, Du-Byung;Lee, Jinwook
    • International Journal of Highway Engineering
    • /
    • v.20 no.3
    • /
    • pp.1-9
    • /
    • 2018
  • PURPOSES : In order to evaluate a crack resistance at cold joint, sealing tape was adopted to apply at cold joint instead of typical tack coat material(RSC-4). The sealing tape was made by hot sealing material. The crack resistance as function of environmental and traffic loading was measured with visual observation. METHODS : In this study, the crack resistance was evaluated as function of environmental and traffic loading. The freeze-thaw method was adopted for environmental loading of asphalt pavement. condition. The damage of cold joint under freeze-thaw action is initiated by ice expansion load and accelerated by the interfacial damage between new and old asphalt pavement. The traffic loading was applied with wheel tracking machine on the cold joint area of the asphalt pavement for 3 hours at $25^{\circ}C$. The evaluation of crack resistance was measured with visual observation. The freeze-thaw results shows that the sealing tape was significantly increased the crack resistance based on. RESULTS : To estimate the crack resistance at cold joint area due to the environmental loading, the Freeze-thaw test was conducted by exposing the product to freezing temperature(approximately $-18^{\circ}C$) for 24 hours, and then allowing it to thaw at $60^{\circ}C$ for 24 hours. The tack coat material(RSC-4) was debonded after 21 cycles of the Freeze-thaw test. The first crack was observed after 14 freeze-thaw cycle with RSC-4 material. But, the sealing tape was not debonded after 24 cycle test. Also, the sealing tape shows the better performance of the crack resistance under the traffic loading with wheel track test. The crack was generated the under traffic loading with RSC-4(tack coating), however, the crack was not shown with sealing tape. It indicates that the sealing tape has a strong resistance of tensile stress due to traffic loading. CONCLUSIONS :Based on limited laboratory test result, a performance of crack resistance using the sealing tape is better than that of general tack coat material(RSC-4). It means that the sealing tape is possible to extend a pavement service life because the crack, one of the main pavement distresses, will be delayed.

A Study on the Sealing Characteristics of O-rings in Gas Pressure Vessel (O-링이 장착된 가스압력용기의 밀봉특성에 관한 연구)

  • Kim Chung Kyun;Cho Seung Hyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.3 s.20
    • /
    • pp.51-57
    • /
    • 2003
  • This paper presents the temperature distribution and deformation characteristics of O-ring groove geometry in which is strongly related the sealing performance of pressure vessels. A working gas in pressure vessel may be heated by a heater and pressurized by a gas compressor. Thus, the pressure vessel should keep high Pressure and temperature for a limited working period. For these operation conditions, the working gas in pressure vessels should not leak to the air by two O-rings with a rectangular groove. The FEM computed results indicate that the thermal and mechanical properties of metal sealing material is very important for stopping a leakage of hot gas in a vessel. Based on the results, high thermal conductive and low mechanical strength material is recommended as a metal sealing one. This may improve the sealing characteristics of O-ring sealing mechanism with a rectangular groove, which reduces the sealing gap between a flange and a cylinder and the width of O-ring groove.

  • PDF

Porosity Control of the Sealing Glass for Joining Alumina Components in a NaS Battery Cell Packaging (NaS 배터리 셀 패키지의 알루미나 컴포넌트 접합용 Sealing Glass의 기공율 제어)

  • Kim, Chi Heon;Heo, Yu Jin;Kim, Hyo Tae
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.23 no.4
    • /
    • pp.57-61
    • /
    • 2016
  • Thick film sealing glass paste is required for cell packaging of NaS based battery for energy storage system, to join the beta-alumina electrolyte tube and the alpha-alumina battery cell cap components. This paper presents the effect of the particle sizes of seal glass powder and the sealing temperatures on the microstructure of the glass sealants was investigated. It was found that the larger in the particle size of seal glass powder, the smaller the pore volume and the number of pores in a unit area. Also, the number of pores decreased with increasing the sealing temperatures while the pore size was increased. This result enables the control of porosity, pore distribution and number of pores in a microstructure of glass sealing component by proper selection of glass powders particle size and sealing temperature.

Air Jet Effect on Performance Improvement of Non-Contact Type Seals for Oil Mist Lubrication Systems (공기분사가 오일미스트 윤활 시스템용 비접촉 시일의 성능 향상에 미치는 영향)

  • Na, Byeong-Cheol;Jeon, Gyeong-Jin;Han, Dong-Cheol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.9 s.180
    • /
    • pp.2159-2166
    • /
    • 2000
  • Recently, high performance machining center requires special type of sealing mechanism that prevent a leakage of oil jet or oil mist lubrication system. Sealing of oil-air mixture plays important r oles to have an enhanced lubrication for performance machining center. Current work emphasizes on investigations of the air jet effect on the protective collar type labyrinth seal. To improve sealing capabilities of conventional labyrinth seals, air jet is injected against the leakage flow. In this study, an adapted model is introduced to improve sealing capability of conventional non-contact type seals. It has a combined geometry of a protective collar type and an air jet type. Both of a numerical analysis by CFD (Computational Fluid Dynamics) and experimental measurements are carried out to verify sealing improvement. The sealing effects of the leakage clearance and the air jet magnitude aic studied in various parameters. Gas or liquid has been used as a working fluid for most of nori-contact types seals including the labyrinth seal. However, it is more reasonable to regard two-phase flows because oil mist or oil jet are used for high performance spindle's lubrication. In this study, working fluid is regarded as two phases that are mixed flow of oil and air phase. Both of turbulence and compressible flow model are also introduced in a CFD analysis to represent an isentropic process. Estimation of non-leaking property is determined by amount of pressure drop in the leakage path. Results of pressure drop in the experiment match reasonably to those of the simulation by introducing a flow coefficient. Effect of the sealing improvement is explained as decreasing of leakage clearance by air jetting. Thus, sealing effect is improved by amount of air jetting even though clearance becomes larger