• Title/Summary/Keyword: Seal Wear

Search Result 92, Processing Time 0.021 seconds

A Study on Formed Tool to Machine Milli-structure Mold (미세구조물 금형가공을 위한 총형공구에 관한 연구)

  • Lee, Hi-Koan;Kim, Yeun-Sul;Kim, Do-Hyung;Roh, Sang-Heup;Yang, Gyun-Eui
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.2 no.4
    • /
    • pp.5-10
    • /
    • 2003
  • This paper presents the formed tool to machine a milli-structure mold. The formed tool is used to machine the geometrical shape of bearing rubber seal for precision machining. The bearing rubber seal has milli-sized complex geometry. Because it is difficult to machine the unique shape exactly by the conventional tool, the formed tool is used in machining die of the bearing seal. In this paper, it is performed to investigate properties of the formed tool; tool wear, cutting force and machined surface roughness. Tool wear increases rapidly with clearance angle Increase. Thus, the dimension accuracy is affected by the clearance angle.

  • PDF

Sliding Contact Analysis of a Spherical Particle between Rubber Seal and Coated Steel Counterface (시일과 코팅된 스틸면 사이의 구형 입자에 의한 미끄럼 접촉 해석)

  • Park, Tae-Jo;Lee, Jun-Hyuk
    • Tribology and Lubricants
    • /
    • v.28 no.6
    • /
    • pp.283-288
    • /
    • 2012
  • In this study, a new sliding contact problem involving an elastomeric seal, a spherical particle and a hard coated steel counterface was modeled to investigate the detailed wear mechanisms related to the sealing surface. The model was also used to design the optimum coating conditions. A three-dimensional finite element contact problem was modeled and analyzed using the nonlinear finite element code, MARC. The deformed steel surface and stress distributions are presented for different coating layers and thicknesses. When the coating thickness is relatively small, the entrapped particle produces surface plastic deformations such as groove and torus. In addition, the sealing surface can be damaged by abrasive wear as well as fatigue wear. For a relatively thick and multi-layered coating, on the other hand, surface plastic deformation does not occur, and the amount of abrasive and fatigue wear is reduced. Therefore, the proposed contact model and results can be used in the design of various sealing systems, further intensive studies are required.

Monitoring of Mechanical Seal Failure with Artificial Neural Network (신경회로망을 이용한 미케니컬 실의 이상상태 감시)

  • Lee, W.K.;Lim, S.J.;Namgung, S.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.12 no.12
    • /
    • pp.30-37
    • /
    • 1995
  • The mechanical seals, which are installed in rotating machines like pump and compressor, are gengrally used as sealing devices in the many fields of industries. The failure of mechanical seals such as leakage,fast and severe wear, excessive torque, and squeaking results in big problems. To monitor the failure of mechanical seals and to propose the proper monitoring techniques with artificial neural network, sliding wear experiments were conducted. Torque and temperature of the mechanical seals were measured during experiments. Optical microstructure was observed for the wear processing after every 10 minute sliding at rotation speed of 1750 rpm and scanning electron microscopy was also observed. During the experiment, the variation of torque and temperature that meant an abnormal phenomenon, was observed. That experimental data recorded were applied to the developed monitoring system with artificial neural network. This study concludes that torque and temperature of mechanical seals wil be used to identify and to monitor the condition of sliding motion of mechanical seals. An availability to monitor the mechanical seal failure with artificial neural network was confirmed.

  • PDF

시일의 마멸로 인한 다단터빈펌프의 위험속도 변화

  • Kim, Yeong-Cheol;Lee, Dong-Hwan;Lee, Bong-Ju
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.02a
    • /
    • pp.203-209
    • /
    • 1998
  • Rotordynamic analysis of a multistage turbine pump using finite element method is performed to investigate the effects of seal wear on Its system behavior. Stiffness and damping coefficients of the 2-axial grooved bearing are obtained as functions of rotating speed. Stiffness and damping coefficients of plane annular seals are calculated as functions of rotating speed as well as seal clearance. As the clearance of seals become larger, these stiffness and damping coefficients decrease drastically so that there can be significant changes in whirl natural frequencies and damping characteristics of the pump rotor system. Although a pump is designed to operate with a sufficient seperation margin from the 1st critical speed, seal wear due to long operation may cause a sudden increase in nitration amplitude by resonance shift and reduce seal damping capability.

  • PDF

Lubrication Analysis of Mechanical Seal using Galerkin Finite Element Method (캘러킨 유한요소법을 이용한 미케니컬 페이스 시일의 윤활성능해석)

  • 최병렬;이안성;최동훈
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1999.06a
    • /
    • pp.197-202
    • /
    • 1999
  • A mechanical face seal is a tribe-element intended to control the leakage of working fluid at the interface of a rotating shaft and its housing. The leakage of working fluid decreases as the seal surfaces get closer each other. But a very small seal clearance results in a drastic reduction of seal life because of high wear and heat generation. Therefore, in the design of mechanical face seals the compromise between low leakage and acceptable life is important and presents a difficult design problem. And the gap geometry of seal clearance affects seal performance very much and becomes an important design variable. In this study the Reynolds equation for the sealing dam of mechanical face seals is numerically analyzed using the Galerkin Finite Element Method, which can be readily applied to various seal geometries. The film pressures of the sealing dam are analyzed, including the effects of the seal face coning and tilt. Then, opening forces, restoring moments, leakages, and dynamic coefficients are calculated.

  • PDF

Sliding Contact Analysis between Chromium Plated Hydraulic Cylinder Rod and Seals (크롬 도금한 유압 실린더 로드와 시일 사이의 미끄럼접촉 해석)

  • Park, Tae Jo;Kim, Min Gyu
    • Journal of Drive and Control
    • /
    • v.15 no.1
    • /
    • pp.10-15
    • /
    • 2018
  • The hydraulic cylinder seals are used not only to protect leakage of the working fluids but also to prevent incoming of foreign particles into the system. Chromium plating is generally applied to improve corrosion and wear resistance. It has been noticed that sealing surface damage occurs due to the hard foreign/wear particles contained in the hydraulic oil. In this study, a three-bodied sliding contact problem related with a PTFE seal, a spherical particle and chrome-plated steel substrate is modeled to investigate the relations to wear mechanism. Using the nonlinear finite element software, MARC/MENTAT, the deformed shapes, the von Mises and first principal stress distributions with plating thickness were compared. The sealing surface was mainly abraded by hard particles embedded in the seal. The plastic deformation of the steel substrate decreased with thicker plating. Hence it could be more effective to coat the sealing surface of a hydraulic cylinder with a hard material such as TiN, TiC and DLC.

Nanoceramic and Polytetrafluoroethylene Polymer Composites for Mechanical Seal Application at Low Temperature

  • Okhlopkova, A.A.;Sleptsova, S.A.;Alexandrov, G.N.;Dedyukin, A.E.;Shim, Ee Le;Jeong, Dae-Yong;Cho, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.5
    • /
    • pp.1345-1348
    • /
    • 2013
  • We investigated the tribochemical and wear properties of Polytetrafluoroethylene (PTFE) based polymer matrix composites with nanoceramic (NC) ${\beta}$-sialon, and $Al_2O_3$ particles for the mechanical seal applications at low temperature. SEM showed that NC particles were homogeneously distributed in the polymer matrix and initiated the formation of the supramolecular spherulites around NC. From the temperature stimulated depolarization (TSD) current results, it was analyzed that the surface charge on nanoceramic affected the formation of the spherulites structure. 2 wt % $Al_2O_3$ NC did not degrade the mechanical properties of PTFE so that composites showed the similar values of tensile strength, elongation at the rupture and friction coefficient as those of neat PTFE. However, the composite with 2 wt % $Al_2O_3$ NC revealed the improved wear resistance, wear rate of 0.4-1.2 mg/h at room temperature and 0.28 mg/h at $-40^{\circ}C$, respectively, while the neat PTFE the 70-75 mg/h at room temperature and 70.3 mg/h at $-40^{\circ}C$.

Optimization Design on the Sealing Surface Profiles of Contacting Seal Units (접촉식 시일장치의 밀봉 접촉면 형상에 대한 최적화 설계연구)

  • Kim, Chung-Kyun
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.6
    • /
    • pp.761-766
    • /
    • 2011
  • In this study, the optimized design profiles between a seal ring and a seal seat of contacting seal units has been proposed based on the FEM computed results. The maximum temperatures, the thermal distortions in axial and radial directions, and maximum contact normal stresses between a seal ring and a seal seat have been analyzed for various contact sealing profiles. The FEM computed results present that the contact area between seal rings and seal seats is very important for a good tribological performance such as low friction heating, low wear, high contact normal stress in a primary sealing components. The seal surface model III in which has a small sealing contact area shows low dilatation of primary sealing components, and high contact stress between a seal ring and a seal seat. This model with small contact surface of a seal ring produces high friction heating and contact stress. But the model III produces very small deformations of contacting sealing surface because of high convection heat transfer by cooling water circulation around the seal ring surface. Thus, the analysis results recommend a short width of a primary sealing unit rather than a big width of contact surfaces of contacting seal units for reducing a leakage and axial deformation of primary seal components.

Development of Mechanical Face Seal in 75-tonf Turbopump for Leakage Reduction (누설 저감을 위한 75톤급 터보펌프 개량형 미케니컬 페이스실 개발)

  • Bae, JoonHwan;Kwak, Hyun-Duck;Lee, ChangHun;Choi, JongSoo
    • Tribology and Lubricants
    • /
    • v.36 no.2
    • /
    • pp.75-81
    • /
    • 2020
  • In this paper, we present an experimental investigation of the leakage and endurance performances of mechanical face seals in a 75-tonf turbopump for the Korea Space Launch Vehicle II first-stage engine. A mechanical face seal is used between the fuel pump and turbine to prevent mixing of the fuel and turbine gas. However, excessive leakage occurs through the carbon attached to the mechanical face seal bellows. To reduce this leakage, we redesign the mechanical face seal such that the contact area between the fuel and carbon is reduced, height of the carbon nose is reduced, and stiffness of the bellows is increased. Then, we conduct static and dynamic leakage tests and endurance tests to compare the performances of the original and modified mechanical face seals. The investigation of the leakage of the old and new mechanical face seals confirms that the leakage performance is significantly improved, by 80%, in the new design in comparison with the old design. The endurance tests demonstrate that the average wear rate of carbon in the new mechanical face seal is 0.1094 ㎛/s. The service lifetime is predicted to be 4,200 s, which is 28 times greater than the requirement. Finally, we present a new mechanical face seal in a 75-tonf turbopump, and perform a validation test in the real-propellant test facility at the NARO Space Center. Based on the test results, we can confirm that the modified mechanical face seal works well under real operating conditions.