• 제목/요약/키워드: Seakeeping performance

검색결과 91건 처리시간 0.019초

실습선 한바다호의 운항성능에 관한 연구(I) -선체감시장치(HMS) 계측 데이터를 이용한 내항성능 평가- (A Study on the Ship's Performance of T.S. HANBADA(I) -The Evaluation of Seakeeping Performance by HMS Measuring Data-)

  • 정창현;이형기;이윤석
    • 한국항해항만학회지
    • /
    • 제31권10호
    • /
    • pp.905-910
    • /
    • 2007
  • 최근에 선박이 대형화, 고속화되면서 선수 충격파 영향으로 인하여 선체 또는 화물에 잦은 손상을 초래하기도 하고, 극판적인 상황에서는 선박이 절단되기도 한다. 본 논문에서는 내항성능 평가요소 중 하나인 상하가속도 값을 선교에 설치된 선체감시장치를 이용하여 해상상태별 변화량을 계측하고, 이를 모형시험 및 이론계산 결과와 상호 비교하였다. 또한 ITTC에서 제시하는 내항성능 기준치와도 비교함으로써 실습선 한바다호의 내항성능을 확인하였다. 이러한 결과는 앞으로 경험할 수 있는 다양한 해상상태에서의 작업가능성 및 위험성 정도의 예측을 가능하게 함으로써 선박의 안전운항에 큰 도움이 될 것으로 판단되며, 또한 다양한 실선계측 자료를 통하여 조선소에서는 보다 우수한 성능의 선박 건조가 가능하리라 본다.

기계학습기반의 근사모델을 이용한 선박 횡동요 운동 예측 (Prediction of Ship Roll Motion using Machine Learning-based Surrogate Model)

  • 김영롱;박준범;문성배
    • 한국항해항만학회지
    • /
    • 제42권6호
    • /
    • pp.395-405
    • /
    • 2018
  • 한국형 e-Navigation의 내항성 안전 모듈은 운항 중인 선박을 실시간으로 모니터링하고 내항성의 이상 상태를 사전에 경고함으로써 선박의 안정성을 확보하는 선내 원격 모니터링 서비스 중 하나이다. 일반적으로 선박설계를 위한 내항성능은 주어진 조건에서 선체 운동 시뮬레이션을 수행하여 평가하여 왔다. 하지만 운항 중 선박의 내항성능을 실시간으로 평가하기 위해 이러한 시뮬레이션을 실제 운항조건에 맞추어 수행하는 것은 계산시간의 한계로 인해 현실적이지 않다. 본 연구에서는 기계학습 기반의 근사모델을 활용하여 선박의 내항성능 평가 요소들 중 하나인 횡동요 운동특성을 합리적으로 보다 빠르게 예측하는 방법을 소개하고자 한다. 다양한 학습 기법과 데이터의 샘플링 조건을 적용하여, 얻어진 근사모델의 결과와 운동해석 결과의 오차가 거의 1% 내로 일치함을 보였다. 따라서 이러한 방법을 활용하면 선박의 실시간 내항성능을 평가하는데 효율적으로 사용할 수 있을 것으로 판단된다.

Inner Beam의 두께비 및 높이비가 LMTT용 Shuttle Car의 Frame 강도 및 강성에 미치는 영향 (DThe Effect of Thickness Ratio and Hight Ratio of Inner Beam on Strength and Stiffness of Frame in Shuttle Car for LMTT)

  • 한동섭;한근조;이권순;심재준;김태형
    • 한국항해항만학회지
    • /
    • 제28권3호
    • /
    • pp.207-211
    • /
    • 2004
  • LMTT(Linear Motor-based Transfer Technology)는 항만 자동화를 위한 컨테이너 터미널용 수평 이송 장치이며, rail과 shuttle car(mover)에 부착된 stator module로 구성된 PMLSM(Permanent Magnetic Linear Synchronous Motor)에 의해 구동된다. 본 논문은 inner beam과 outer beam의 높이비가 LMTT용 shuttle car의 frame 강도 및 강성에 미치는 영향을 살펴보았다. 설계변수는 inner beam의 단면형상 및 높이비로 설정하였으며, 유한요소해석을 통하여 설계변수가 frame의 강도 및 강성에 미치는 영향을 살펴보았다.

Design of high-speed planing hulls for the improvement of resistance and seakeeping performance

  • Kim, Dong Jin;Kim, Sun Young;You, Young Jun;Rhee, Key Pyo;Kim, Seong Hwan;Kim, Yeon Gyu
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제5권1호
    • /
    • pp.161-177
    • /
    • 2013
  • High-speed vessels require good resistance and seakeeping performance for safe operations in rough seas. The resistance and seakeeping performance of high-speed vessels varies significantly depending on their hull forms. In this study, three planing hulls that have almost the same displacement and principal dimension are designed and the hydrodynamic characteristics of those hulls are estimated by high-speed model tests. All model ships are deep-V type planing hulls. The bows of no.2 and no.3 model ships are designed to be advantageous for wave-piercing in rough water. No.2 and no.3 model ships have concave and straight forebody cross-sections, respectively. And length-to-beam ratios of no.2 and no.3 models are larger than that of no.1 model. In calm water tests, running attitude and resistance of model ships are measured at various speeds. And motion tests in regular waves are performed to measure the heave and pitch motion responses of the model ships. The required power of no.1 (VPS) model is smallest, but its vertical motion amplitudes in waves are the largest. No.2 (VWC) model shows the smallest motion amplitudes in waves, but needs the greatest power at high speed. The resistance and seakeeping performance of no.3 (VWS) model ship are the middle of three model ships, respectively. And in regular waves, no.1 model ship experiences 'fly over' phenomena around its resonant frequency. Vertical accelerations at specific locations such as F.P., center of gravity of model ships are measured at their resonant frequency. It is necessary to measure accelerations by accelerometers or other devices in model tests for the accurate prediction of vertical accelerations in real ships.

해상 이동형 해수담수화 플랜트 선박의 저항 및 내항 성능 평가에 따른 장기 하중 추정 (Long-term Loads based on Evaluation of Resistance and Seakeeping Performances for a Desalination Plant Ship)

  • 이재빈;백광준;정준모
    • 한국해양공학회지
    • /
    • 제33권6호
    • /
    • pp.632-640
    • /
    • 2019
  • Desalination plant ships have been recently regarded as one of the probable solutions for drought seasons in many countries. Because desalination plants should be mounted on the desalination ships and special purpose storages such as salty waste water tanks are necessary, onboard and compartment arrangements would be distinguished from those of other conventional commercial ships. This paper introduces some basic design procedure including resistance/propulsion and seakeeping performances. The ship lines were improved step by step after modification of the ship lines and verification of resistance/propulsion performances using computational fluid dynamics (CFD). After finalization of the ship lines, the seakeeping performance was also evaluated to check motion behaviors and drive wave-induced loads such as the wave shear force and bending moment. It was proved that the predicted long-term vertical wave shear force and bending moment were significantly less than the rule-based ones, thus it is expected that the deliverables of this study will reduce the construction cost of desalination plant ships.

연안 여객선의 내항성능 위험도를 이용한 항해 안전성 평가에 관한 연구 (Distribution Evaluation of the Ship's Navigational Safety Using Dangerousness on the Korean Coast)

  • 김철승;정창현;김순갑;공길영;설동일;이윤석
    • 해양환경안전학회:학술대회논문집
    • /
    • 해양환경안전학회 2003년도 춘계학술발표회
    • /
    • pp.31-40
    • /
    • 2003
  • There are winds and waves in the sea, and they are changed frequently in accordance with the weather. By analyzing them which have the closest relation to the ship's safe voyage. evaluating the seakeeping performance and then taking a proper action, navigators should carry out safe navigation on the sea. A ship in seaways suffers continuous disturbances by irregular waves, and ship motions with irregular waves cannot be easily described as a system model which is adequate to a control system. But, in general, for seakeeping analysis, ship motions in irregular seas can be estimated by the superposition of the motion responses in regular wave components of the sea spectrum. After comparing and analyzing the winds and waves in major sea areas, this paper evaluates the navigational safety of ships on the Korean coast with potential dangerous seakeeping performance using the weather information provided by land. The conclusion is as follows : (1) It is possible that the safety of ships could be secured more accurately by evaluating the seakeeping performance of ships. (2) When the weather is bad, the departure of ships could be controlled by evaluating the navigational safety of ships. (3) When a ship is placed in commission in any area, this evaluation could be used to decide the type and size of ship in use.

  • PDF

연안 여객선의 내항성능 위험도를 이용한 항해 안전성 평가에 관한 연구 (Evaluation of the Ship′s Navigational Safety Using Dangerousness on the Korean Coast)

  • 김철승;정창현;김순갑;공길영;설동일;이윤석
    • 해양환경안전학회지
    • /
    • 제9권1호
    • /
    • pp.41-50
    • /
    • 2003
  • 한국 연안의 각 항로에 취항하고 있는 대표적인 선형의 여객선들을 대상으로, 각 선형별로 선체운동 계산, 내항성능을 분석하여 선박의 안전성을 평가하였다. 이를 위하여 선박의 안전운항과 가장 밀접한 관련을 갖는 바람과 파랑을 주요 해역별로 비교 분석하였다. 이러한 기강정보를 입력요소로 하여 주요해역을 항행하는 대표적인 선형의 여객선들에 대하여 수치 시뮬레이션을 실시하여 여객선의 항해안정성을 평가하였다.

  • PDF

함정의 작전중 항해 안전성에 관한 종합 평가 (An Integrated Evaluation of Navigational Safety for Navel Vessels)

  • 공길영
    • 한국국방경영분석학회지
    • /
    • 제24권1호
    • /
    • pp.132-145
    • /
    • 1998
  • The seakeeping performance can be defined as the ability of a ship to go to sea, and successfully and safely execute its missions even in adverse environmental conditions. From the viewpoint of safe operation, it is primarily important to estimate the seakeeping performance of a ship in a seaway. A method of evaluating navigational safety is presented by means of the integrated seakeeping performance index(ISPI) by measuring only vertical acceleration. Judgement of dangerousness is carried out for two types of naval vessels in applying the involuntary speed losses. The used models for computer simulation are Lpp 175m light aircraft carrier and Lpp 93m frigate. In developing the practical evaluation system of navigational safety, it is expected to be useful to solve the difficulties in measuring factors by sensors. The results are also useful for developing the optimum type of naval vessels by applying at the initial design phase.

  • PDF

On the Development of Typhoon Avoidance Simulation System with the Evaluating Method by Seakeeping Performance of Ship

  • Song Chae-Uk;Kong Gil-Young;Jin Guo-Zhu
    • 한국항해항만학회지
    • /
    • 제29권4호
    • /
    • pp.299-304
    • /
    • 2005
  • A simulation system is needed to train students and mariners in order that they can take suitable actions to evade typhoon's strike promptly and sufficiently. In order to make such kind of system, three kinds of models about the typhoon are necessary, typhoon prediction model to generate typhoon's track, wind & wave-field model to make sea conditions around the typhoon and evaluation model of trainee's action whether their actions were suitable or not during simulation. We have developed the prediction and wind & wave-field models of typhoon, but the evaluation model has not been developed yet. In this paper, after making a method for evaluating trainee's actions by seakeeping performance, we propose an typhoon avoidance simulation system for training mariners so that they can promote their abilities to evade the typhoons at sea.

Hydrodynamic Performance of a 2,500-ton Class Trimaran

  • Kang, kuk-Jin;Lee, Chun-Ju;Kim, Sun-Young;Park, Yun-Rak;Lee, Jin-Tae
    • Journal of Ship and Ocean Technology
    • /
    • 제6권2호
    • /
    • pp.23-36
    • /
    • 2002
  • This paper describes the powering, seakeeping and maneuvering performances for a 2,500-ton class trimaran. Influence of the side-hull forms and location of those in longitudinal and transverse direction to resistance performance was systematically investigated by a series of model tests and numerical calculations. It was found that the longitudinal location of side-hulls was the most influential design parameter to the resistance performance of the trimaran and the optimum location of side-hull depends on ship speeds. When the side-hull stem is located near the primary wave hollow generated by the main hull, the trimaran shows the best resistance performance. Powering performance of the trimaran is superior to those of similar mono-hull ships. Seakeeping model tests for the trimaran were executed and the results were compared with the theoretical results of a similar mono-hull ship. Generally speaking, seakeeping performance of the trimaran is superior to that of a mono-hull ship. In particular, pitching and rolling performance of the trimaran is excellent, which is due to the increased length and breadth. Maneuvering model tests using a HPMM equipment were executed to evaluate the maneuvering performance of the trimaran. Maneuvering simulation was performed using the maneuvering coefficients from the model tests. The results show that the control ability of heading angle and the direction keeping stability of the trimaran is excellent, even though the turning performance is rather worse compared to those of a similar mono-hull ship.