• Title/Summary/Keyword: Seakeeping performance

Search Result 91, Processing Time 0.028 seconds

A Study on the Improvement of VDR Performance appling the Navigation Dangerousness Evaluation Technology (항해위험도 평가기술을 이용한 VDR 성능 개선에 관한 연구)

  • Kong, Gil-Young;Kim, Young-Du;Jung, Chang-Hyun
    • Journal of Navigation and Port Research
    • /
    • v.34 no.5
    • /
    • pp.319-324
    • /
    • 2010
  • For the purpose of technological analysis in the marine accidents and their prevention, IMO have made it obligatory to load VDR which is similar to the black box in aircraft. However, in case of body sinkage, capsizing, stranding and plunging which are almost 10% of marine accidents, it is difficult to take out the necessary data from the VDR in order to analyze the cause of them. Therefore, this paper apply the navigation dangerousness evaluation technology to the VDR to improve its performance. And we suggest that the vertical acceleration which is one of the factors for evaluating seakeeping performance of a ship is to be added in the existing VDR record data recommended by IMO.

Model Test for Towing Stability and Seakeeping of a Multi-Purpose Mobile Base (해상풍력 일괄설치시스템 예인 안정성 및 내항성능 평가를 위한 모형시험)

  • Cho, Dong-Ho;Lee, Jun-Shin;Ryu, Moo-Sung;Jung, Min-Uk;Lee, Ho-Yeop;Han, Kwan-Woo;Kim, Seung-Han
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.2
    • /
    • pp.163-171
    • /
    • 2020
  • A model test for assessment of towing stability and seakeeping of a multi-purpose mobile base (MMB) was performed in calm water and wave conditions. Scale ratio of the MMB was 1/48. Tension of the towing line was measured during tests to estimate effective power to tow the full scale MMB. The tests were repeated with towing speed. In addition, an inertial measurement unit was used to measure six DOF motion of the model. Seakeeping performance was assessed through the captive model test.

Numerical Study on Unified Seakeeping and Maneuvering of a Russian Trawler in Wind and Waves

  • Nguyen, Van Minh;Nguyen, Thi Thanh Diep;Yoon, Hyeon Kyu;Kim, Young Hun
    • Journal of Ocean Engineering and Technology
    • /
    • v.35 no.3
    • /
    • pp.173-182
    • /
    • 2021
  • The maneuvering performance of a ship on the actual sea is very different from that in calm water due to wave-induced motion. Enhancement of a ship's maneuverability in waves at the design stage is an important way to ensure that the ship navigates safely. This paper focuses on the maneuvering prediction of a Russian trawler in wind and irregular waves. First, a unified seakeeping and maneuvering analysis of a Russian trawler is proposed. The hydrodynamic forces acting on the hull in calm water were estimated using empirical formulas based on a database containing information on several fishing vessels. A simulation of the standard maneuvering of the Russian trawler was conducted in calm water, which was checked using the International Maritime Organization (IMO) standards for ship maneuvering. Second, a unified model of seakeeping and maneuvering that considers the effect of wind and waves is proposed. The wave forces were estimated by a three-dimensional (3D) panel program (ANSYS-AQWA) and used as a database when simulating the ship maneuvering in wind and irregular waves. The wind forces and moments acting on the Russian trawler are estimated using empirical formulas based on a database of wind-tunnel test results. Third, standard maneuvering of a Russian trawler was conducted in various directions under wind and irregular wave conditions. Finally, the influence of wind and wave directions on the drifting distance and drifting angle of the ship as it turns in a circle was found. North wind has a dominant influence on the turning trajectory of the trawler.

Anti-slamming bulbous bow and tunnel stern applications on a novel Deep-V catamaran for improved performance

  • Atlar, Mehmet;Seo, Kwangcheol;Sampson, Roderick;Danisman, Devrim Bulent
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.302-312
    • /
    • 2013
  • While displacement type Deep-V mono hulls have superior seakeeping behaviour at speed, catamarans typically have modest behaviour in rough seas. It is therefore a logical progression to combine the superior seakeeping performance of a displacement type Deep-V mono-hull with the high-speed benefits of a catamaran to take the advantages of both hull forms. The displacement Deep-V catamaran concept was developed in Newcastle University and Newcastle University's own multi-purpose research vessel, which was launched in 2011, pushed the design envelope still further with the successful adoption of a novel anti-slamming bulbous bow and tunnel stern for improved efficiency. This paper presents the hullform development of this unique vessel to understand the contribution of the novel bow and stern features on the performance of the Deep-V catamaran. The study is also a further validation of the hull resistance by using advanced numerical analysis methods in conjunction with the model test. An assessment of the numerical predictions of the hull resistance is also made against physical model test results and shows a good agreement between them.

Performance Assessment of Navigation Seakeeping for Coastal Liquified-Natural-Gas Bunkering Ship (연안선박용 LNG 벙커링 전용선박의 내항성능 평가에 대한 연구)

  • Yi, Minah;Park, Jun-Bum;Lee, Chang-Hee
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.7
    • /
    • pp.904-914
    • /
    • 2020
  • Through the Ministry of Trade, Industry, and Energy, South Korea is trying to support the "Building Project for Liquified Natural Gas (LNG) Bunkering Ship," centered on the Korea Gas Corporation, while the Ministry of Maritime Af airs and Fisheries is pushing to construct an LNG bunkering terminal at Busan New Port. LNG bunkering ships are essential for supplying LNG fuel from the terminal to the ships, resulting in the need for safety operation procedures. Therefore, in this study, the stability of a coastal LNG bunkering ship operating from Busan New Port to the anchorage in Busan Port was assessed to investigate the need for operational procedures for coastal LNG bunkering ships. Seakeeping analysis of the LNG bunkering ship was performed for each significant wave height by combining the response amplitude operator from the ship motion analysis under the potential flow theory with the actual observed sea data for five years and Texel, Marsen, and Arsloe (TMA) spectrum suitable for the Busan coast. The results showed that the roll and horizontal acceleration were the main risks that affected the navigation seakeeping performance above a significance wave height of 2 m. The operational periods of the LNG bunkering ship ranged from 83.3% to 99.9% of the total observation period.

Parametric Modeling and Shape Optimization of Offshore Structures

  • Birk, Lothar
    • International Journal of CAD/CAM
    • /
    • v.6 no.1
    • /
    • pp.29-40
    • /
    • 2006
  • The paper presents an optimization system which integrates a parametric design tool, 3D diffraction-radiation analysis and hydrodynamic performance assessment based on short and long term wave statistics. Controlled by formal optimization strategies the system is able to design offshore structure hulls with superior seakeeping qualities. The parametric modeling tool enables the designer to specify the geometric characteristics of the design from displacement over principal dimensions down to local shape properties. The computer generates the hull form and passes it on to the hydrodynamic analysis, which computes response amplitude operators (RAOs) for forces and motions. Combining the RAOs with short and long-term wave statistics provides a realistic assessment of the quality of the design. The optimization algorithm changes selected shape parameters in order to minimize forces and motions, thus increasing availability and safety of the system. Constraints ensure that only feasible designs with sufficient stability in operation and survival condition are generated. As an example the optimization study of a semisubmersible is discussed. It illustrates how offshore structures can be optimized for a specific target area of operation.

Development of Free Running System for 2m-class Ship Models (2m급 모형선용 자유항주시스템 개발)

  • Shin, Hyun-Kyoung;Kim, Min-Sung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.45 no.3
    • /
    • pp.247-257
    • /
    • 2008
  • In this paper, a free running system, which is developed recently for a 2m-class ship models, will be introduced. For the remote control of hardware, GUI of software packages was developed using Visual Basic 6.0, and Host PC with Positioning Board manages Servo drive. Then the drive operates propeller and rudder. Its control performance will be shown. Also its adaptability to the resistance, manoeuverability and seakeeping model tests will be considered through the installation on a KTTC standard ship model from MOERI.

Effects of Hull Form Variations on Resistance and Seakeeping Performance of Planing Hulls with and without Incoming Regular Waves (고속 활주선의 선형에 따른 저항 성능 및 규칙파 중 운동 성능 고찰)

  • Kim, Dong Jin;Kim, Sun Young;Kim, Seong Hwan;Seo, Jeong Hwa;Rhee, Shin Hyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.5
    • /
    • pp.369-379
    • /
    • 2014
  • Planing hull forms have significant influences on those hydrodynamic performances in calm water and in waves. Therefore, the hydrodynamic performance of a planing vessel should be predicted by model tests or theoretical calculations, and be confirmed whether it shows the performance requirements at the design stage. In this study, four planing hull forms are designed with the goal of the improvement of resistance and seakeeping performance, and 1/6.5 scale model tests are carried out in Seoul National University towing tank. The effects of design parameters such as length-to-beam ratio, deadrise angle and forebody shape on the hydrodynamic performance are investigated, based on model test results. Running attitude and resistance of model ships in calm water are also estimated by empirical formulae proposed by Savitsky (1964; 2007; 2012), and compared with the model test results. It is shown that calm water performance of non-prismatic planing hulls can be predicted well by Savitsky (2012)'s formula which improves the original Savitsky(1964/2007)'s formula by taking into account the variations of deadrise angles, and the actual angles between the hull bottom and the free surface.

Effect of Hull Form on Motion Characteristics of EPSO (선형이 EPSO의 운동특성에 미치는 영향)

  • 원윤상;심달진;김진기;유우준;장종희
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.266-269
    • /
    • 2001
  • This paper describes the effect of hull form on motion characteristics of FPSO. The purpose of the present study is to investigate seakeeping performance of ship type FPSO in comparison with those of barge type FPSO. Model test result shows that the barge type FPSO is better in heave and pitch motion, while the ship type FPSO is superior in roll motion.

  • PDF

CFD computation of ship motions and added resistance for a high speed trimaran in regular head waves

  • Wu, Cheng-Sheng;Zhou, De-Cai;Gao, Lei;Miao, Quan-Ming
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.3 no.1
    • /
    • pp.105-110
    • /
    • 2011
  • Some research work on CFD computation of ship motions and added resistance in waves for a high speed trimaran is carried out in this paper. The governing equations, Reynolds Averaged Navier-Stokes and continuity equations are discretized by finite volume method. Volume of fluid method is adopted to deal with the nonlinear free surface. The incident waves are generated from the inflow boundary by prescribing a velocity profile resembling flexible flap wavemaker motions, and the outgoing waves are dissipated inside an artificial damping zone located at the rear part of the wave tank. In this paper, the computed results of ship motion and added resistance for a high speed trimaran are presented. The results of seakeeping experiment for the high speed trimaran carried out in CSSRC towing tank are also presented in this paper. Rather good agreements are shown between the computational and experimental results. The work in this paper provides a numerical tool for the study of seakeeping performance of high speed trimarans.