• Title/Summary/Keyword: Seabed

Search Result 591, Processing Time 0.021 seconds

Estimation of reaction forces at the seabed anchor of the submerged floating tunnel using structural pattern recognition

  • Seongi Min;Kiwon Jeong;Yunwoo Lee;Donghwi Jung;Seungjun Kim
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • The submerged floating tunnel (SFT) is tethered by mooring lines anchored to the seabed, therefore, the structural integrity of the anchor should be sensitively managed. Despite their importance, reaction forces cannot be simply measured by attaching sensors or load cells because of the structural and environmental characteristics of the submerged structure. Therefore, we propose an effective method for estimating the reaction forces at the seabed anchor of a submerged floating tunnel using a structural pattern model. First, a structural pattern model is established to use the correlation between tunnel motion and anchor reactions via a deep learning algorithm. Once the pattern model is established, it is directly used to estimate the reaction forces by inputting the tunnel motion data, which can be directly measured inside the tunnel. Because the sequential characteristics of responses in the time domain should be considered, the long short-term memory (LSTM) algorithm is mainly used to recognize structural behavioral patterns. Using hydrodynamics-based simulations, big data on the structural behavior of the SFT under various waves were generated, and the prepared datasets were used to validate the proposed method. The simulation-based validation results clearly show that the proposed method can precisely estimate time-series reactions using only acceleration data. In addition to real-time structural health monitoring, the proposed method can be useful for forensics when an unexpected accident or failure is related to the seabed anchors of the SFT.

A Study on the Ways to Joint Marine Development and Joint Marine Environmental Protection in Northeast Asia (동북아 해역 권원중첩수역 공동개발합의와 공동환경보호합의 도출 방안)

  • Kim, Ki-Sun
    • Strategy21
    • /
    • s.37
    • /
    • pp.193-241
    • /
    • 2015
  • China, Japan and Korea are the world's top 10 energy consumers, and so very interested in the development of seabed hydrocarbon resources in order to meet their energy demands. The East China Sea is the tri-junction area where three countries' entitlements on the maritime boundaries are overlapped. There are abundant oil reserves in the East China Sea, and therefore competitions among countries are growing to get control of them. Although these countries have concluded the bilateral agreements to jointly develop resources in the East China Sea, they do not function as well. Because joint development and management of seabed petroleum resources can lead to stable development system, and to lower possibility of legal and political disputes, the needs for joint development agreement among three countries are urgent. Meanwhile, Northeast Asian seas are semi-closed seas, which are geographically closed and vulnerable to marine pollution. Moreover there are a lot of nuclear power plants in coastal area, and seabed petroleum resources are being developed. So it is likely to occur nuclear and oil spill accidents. Fukushima nuclear disaster and Bohai Bay oil spill accident in 2011 are the cases to exhibit the potential of major marine pollution accidents in this area. It is anticipated that the risks become higher because power plants and offshore oil platforms are extending gradually. Therefore, the ways to seek the joint marine environmental protection agreement focused on regulation of nuclear power plant and offshore oil platform have to be considered. In this paper, we try to find the way to make joint development and joint environmental protection agreement in Northeast Asian seas. We concentrate on the measure to drive joint development of seabed petroleum deposits in East China Sea's overlap area, despite of maritime delimitation and territorial disputes, and we try to drive joint marine environmental protection system to respond to marine pollution and accidents due to offshore oil platform and nuclear power plants. Through these consideration, we seek solutions to deal with lack of energy, disputes of maritime territorial and boundary delimitation, and marine pollution in Northeast Asia.

A Study on Scour Characteristics of Artificial Reef-Installed Grounds in the East and West Coasts (동해안 및 서해안 인공어초 설치 지반의 세굴 발생 특성 연구)

  • Yun, Dae-Ho;Lim, Byeong-Gwon;Lee, Ji-Sung;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.3
    • /
    • pp.337-348
    • /
    • 2024
  • Artificial reef often experiences a functional loss due to scour, even though serveral surveys of a seabed were performed prior to installation. Particularly in the east and west coasts in Korea, where the artificial reefs are installed, there are clear differences in the geotechnical characteristics of the seabed. Therefore, in this study, both field surveys and laboratory experiments were conducted to investigate the scouring characteristics of artificial reefs installed on the east and west coasts of Korea. The laboratory experiments were performed with different velocities and soil types. The field survey results of artificial reef revealed that artificial reef-installed seabeds in the east and west coasts are more vulnerable to scour than settlement. Particularly in the west coast, the loss ratio caused by scour was found to exceed 50 % in most cases. The experimental results showed that scouring occurred faster and more severely on the west coast seabed, which has a smaller particle size compared to the east coast. Additionally when the scour depth exceeded approximately 10 % of the height of the artificial reef, the artificial reef tilted forward and further scouring was induced.

Characterizing Geomorphological Properties of Western Pacific Seamounts for Cobalt-rich Ferromanganese Crust Resource Assessment (서태평양 해저산의 망간각 자원평가를 위한 해저지형 특성 분석)

  • Joo, Jongmin;Kim, Jonguk;Ko, Youngtak;Kim, Seung-Sep;Son, Juwon;Pak, Sang Joon;Ham, Dong-Jin;Son, Seung Kyu
    • Economic and Environmental Geology
    • /
    • v.49 no.2
    • /
    • pp.121-134
    • /
    • 2016
  • We characterize the spatial distribution of Cobalt-rich ferromanganese crusts covering the summit and slopes of a seamount in the western Pacific, using acoustic backscatter from multibeam echo sounders (MBES) and seafloor video observation. Based on multibeam bathymetric data, we identify that ~70% of the summit area of this flattopped seamount has slope gradients less than $5^{\circ}$. The histogram of the backscatter intensity data shows a bi-modal distribution, indicating significant variations in seabed hardness. On the one hand, visual inspection of the seafloor using deep-sea camera data exhibits that the steep slope areas with high backscatter are mainly covered by manganese crusts. On the other hand, the visual analyses for the summit reveal that the summit areas with relatively low backscatter are covered by sediments. The other summit areas, however, exhibit high acoustic reflectivity due to coexistence of manganese crusts and sediments. Comparison between seafloor video images and acoustic backscatter intensity suggests that the central summit has relatively flat topography and low backscatter intensity resulting from unconsolidated sediments. In addition, the rim of the summit and the slopes are of high acoustic reflectivity because of manganese crusts and/or bedrock outcrops with little sediments. Therefore, we find a strong correlation between the acoustic backscatter data acquired from sea-surface multibeam survey and the spatial distribution of sediments and manganese crusts. We propose that analyzing acoustic backscatter can be one of practical methods to select optimal minable areas of the ferromanganese crusts from seamounts for future mining.

A Study on Durability Verification of Seabed-Mounted Acoustic Sensor System (해저매설형 음향센서 시스템의 내구성 검증 방안에 대한 연구)

  • Shin, Jeung Ho
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.29 no.3
    • /
    • pp.147-153
    • /
    • 2017
  • In this paper, a test is performed to verify the mechanical durability of acoustic sensor system mounted in seabed given test specification. High system durability is required for acoustic sensor system which is costly for installation process, and is affected with various tensional loads by installation equipments. So, it is necessary to verify the system durability including its performance or lifetime in mounted environments. The list of specified tests is mainly based on UJ QTS 200 and the system mostly satisfies the test specification for electrical characteristics.

Impact Characteristics of Subsea Pipeline Considering Seabed Properties and Burial Depth (해저지반 성질과 매설깊이 변화에 따른 해저파이프의 충돌 특성)

  • Shin, Mun-Beom;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.31 no.3
    • /
    • pp.219-226
    • /
    • 2017
  • In this study, the impact characteristics of subsea pipelines that were installed in various soil types and burial depths were evaluated by a numerical method. An impact scenario replicated a dropped ship anchor that fell vertically and impacted an installed subsea pipeline. In order to calculate the impact force through terminal velocity, FLUENT, a computational fluid dynamic program and MDM (Moving Deforming Mesh) technique were applied. Next, a dynamic finite element program, ANSYS Explicit Dynamics, was used for impact analysis between the anchor and pipeline (or, subsea if they were buried). Three soil types were considered: loose sand, dense sand and soft clay by applying the Mohr-coulomb model to the seabed. The buried depth was assumed to be 0 m, 1 m and 2 m. In conclusion, a subsea pipeline was the most stable when buried in dense sand at a depth of 2 m to prevent impact damage.

Evaluation of Behaviors on Mooring Line Embedded in Sand Using Centrifuge Test (원심모형실험을 이용한 모래지반에 관입된 계류선 거동 평가)

  • Lee, Hoon Yong;Kim, Surin;Kim, Jaehyun;Kim, Dong-Soo;Choo, Yun Wook;Kwo, Osoon
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.47-54
    • /
    • 2014
  • When an anchor penetrates and is installed under a seabed, a portion of the mooring line connected to the anchor is also embedded under the seabed. This embedded mooring line affects the capacity of the anchor in two ways. First, the frictional resistance that occurs between the mooring line and the seabed reduces the pulling force acting on the anchor. Second, the embedded part of the mooring line forms a reverse catenary shape due to the bearing resistance of the soil, so that an inclined pulling force is applied to the anchor. To evaluate the mooring line's effect on the capacity of an anchor in sand, centrifuge model tests were performed using two relative sand densities of 76% and 51% while changing the anchor depths. The test results showed that the load is reduced much more in deep and dense sand, and the inclination angle of the load is lower in shallow and loose sand.

Reviews on the Responsibilities and Obligations of States Sponsoring Persons and Entities with Respect to Activities in the Area (심해저활동에 대한 보증국의 의무와 책임에 관한 고찰)

  • Lee, Yong-Hee
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.485-495
    • /
    • 2011
  • On February 11, 2011, upon request of the International Seabed Authority, 'the Seabed Dispute Chamber of the International Tribunal for the Law of the Sea(henceforth Chamber)' rendered its advisory opinion on the responsibilities and obligations of States sponsoring persons and entities with respect to activities in the Area. The advisory opinion covered three questions: What are the legal responsibilities and obligations of the sponsoring states with respect to the sponsorship of activities in the Area? What is the extent of liability of a State Party for any failure to comply with the LOS Convention and relevant instruments? What are the necessary and appropriate measures that a sponsoring State must take in order to fulfil its responsibilities? In particular, the Chamber delivered its opinion on the different responsibilities and obligations of developed and developing sponsoring states. This paper reviews the above three questions through analyzing the advisory opinion and makes some recommendations for the fulfillment of the responsibilities and obligations of Korea as a sponsoring states.

A Study of Variation of Wave-induced Stresses in a Seabed (파랑하중에 의한 해저지반의 응력변화에 대한 연구)

  • 장병욱;박영권;우철웅
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.1
    • /
    • pp.79-89
    • /
    • 1996
  • It is expected that the soil hehaviours in the seahed subjected to cyclic wave loads are much different from that on the ground Cyclic shear stresses developed below the ocean bed as a result of a passing wave train may progressively build up pore pressure in certain soils. Such build-up pore pressure may be developed dynamic behaviour such as liquefaction and significant deformation of the seabed. Currently available analytical and testing methods for the seabed subjected to cyclic wave loads are not general. The purpose of the study are to provide a test method in laboratory and to analyse the mechanism of wave-induced stresses and liquefactions potentials of the unsaturated silty marine sand. It is showed that the test set-up made especially for this study delivers exactly oscillatory wave pressures of the form of sine function. Laboratory test results defining the cyclic shear strength of the unsaturated porous medium that is homogenously sedimented. It is understood that the pore water pressure due to induced-waves is not accumulated as the wave number increases but reveals periodical change on the still water surface. The magnitude of the pore water pressure tends to be attenuated radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF

An Experimental Study on the Variation of Pore Water Pressures in the Seabed Subjected to Waves (파랑하중에 의한 해저지반의 공극수압 변화에 대한 연구)

  • 장병욱;강준영
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.85-94
    • /
    • 1996
  • For the geotechnical analysis in the construction and Deign of the coastal structures, one of the most important factors is the existence of waves. The dynamic behavior and deformation of the seabed subjected to wave load must be considered. It is expected that the soil behavior in the seabed subjected to cyclic wave load is much different from that on the ground subjected to dynamic forces such as earthquake. The purposes of this study are as follows ; Firstly, to provide a testing method to generate wave loads in the laboratory and measuring oscillatory pore water pressures in the unsaturated marine silty sand specimen, Secondly, to analyze the mechanism of wave induced pore water pressures and liquefaction potentials under the conditions in the testing. It is shown that the test set-up manufactured especially for the test is good to generate oscillatory wave pressures to the specimen with sine wave type. From the results of this study, it is understood that the pore water pressure due to induced waves is not accumulated as the wave number increases but is periodically varied with wave passage on still water surface. The magnitude of pore water pressures measured tends to be diminished radically with a certain time lag under the action of both high and low waves as depth increases.

  • PDF