• 제목/요약/키워드: Sea-level Change

검색결과 480건 처리시간 0.019초

THE CASPIAN SEA LEVEL, DYNAMICS, WIND, WAVES AND UPLIFT OF THE EARTH'S CRUST DERIVED FROM SATELLITE ALTIMETRY

  • Lebedev, S.A.;Kostianoy, A.G.
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.973-976
    • /
    • 2006
  • The oscillations of the Caspian Sea level represent a result of mutually related hydrometeorological processes. The change in the tendency of the mean sea level variations that occurred in the middle 1970s, when the long-term level fall was replaced by its rapid and significant rise, represents an important indicator of the changes in the natural regime of the Caspian Sea. Therefore, sea level monitoring and long-term forecast of the sea level changes represent an extremely important task. The aim of this presentation is to show the experience of application of satellite altimetry methods to the investigation of seasonal and interannual variability of the sea level, wind speed and wave height, water dynamics, as well as of uplift of the Earth’s crust in different parts of the Caspian Sea and Kara-Bogaz-Gol Bay. Special attention is given to estimates of the Volga River runoff derived from satellite altimetry data. The work is based on the 1992-2005 TOPEX/Poseidon (T/P) and Jason-1 (J-1) data sets.

  • PDF

Effects Of Atmospheric Pressure And Wind Stress On Daily Mean Sea Level In The Bay Of Biscay. Analysis Of Continental Shelf Waves

  • Lie, Heung-Jae
    • 한국해양학회지
    • /
    • 제14권2호
    • /
    • pp.45-53
    • /
    • 1979
  • The barometric factor is estimated at five stations in the Bay of Biscay from the linear regression between daily mean sea level and atmospheric pressure. The results show that the adjusted sea level change is important in amplitude in spite of the barometric response of the sea level to the atmospheric pressure. The cross-correlations between adjusted sea levels and the two components of wind stress suggest that the adjusted sea level is highly related to the longshore wind stress. The observed phase and the time lag between adjusted sea levels at adjacent stations aree consistent with the hypothesis of the northward travelling continental shelf waves.

  • PDF

Volume Transport through the La-Perouse (Soya) Strait between the East Sea (Sea of Japan) and the Sea of Okhotsk

  • Saveliev Aleksandr Vladimirovich;Danchenkov Mikhail Alekseevich;Hong Gi-Hoon
    • Ocean and Polar Research
    • /
    • 제24권2호
    • /
    • pp.147-152
    • /
    • 2002
  • Seasonal and interannual variation of volume transport through the La-Perouse Strait were estimated using the difference of sea level observed at Krillion of Sakhalin, Russia, and Wakkanai of Hokkaido, Japan, during the period of 1975-1988. Historical sea level measurements between Russian and Japanese tide gauge data were normalized using an independent direct volume transport measurement. Volume transport from the East Sea (Sea of Japan) to the Sea of Okhotsk varied from -0.01 to 1.18 Sv with an annual mean value of 0.61 Sv. Monthly water transport rates showed a unimodal distribution with its maximum occurring in summer (August) and minimum in winter (December-February). The annual mean volume transport varied from 0.2 to 0.8 Sv during the period of 1975-1988 with the maximum variance of 0.6 Sv.

해수면 변화와 해안 침식 (Sea-level Change and Coastal Erosion)

  • Jeon, Dong-Chull
    • 한국해안해양공학회지
    • /
    • 제7권4호
    • /
    • pp.289-304
    • /
    • 1995
  • 북태평양에서 선택한 조석 정점에서 상대 해수면의 시계열 자료와 하와이 제도에서 해안선 변화의 항공 사진을 분석하였다. 대부분의 정점에서 해면의 장기적 상승 추이는 +1 내지 +5 mm/yr의 범위를 보이는데, 주로 지구 온난화 및 지질학적 판(plate)의 이동에 의해 나타나고 있다. 해면의 연변화 및 수년 주기의 변화는 각각 태양 복사의 연변화에 의한 표층수의 팽창 및 수축과, ENSO 주기와 관계된 대기-해양의 상호작용으로부터 기인한다. 이러한 세 가지의 다른 시간 규모로 발생하는 해면변화(장기적 해면상승 추이, 연변화, 수년주기 변화)가 장기적으로 이안 퇴적물 수송의 결과로서 나타나는 해안선 변화에 어떻게 정량적으로 기여하는지 추정하는 가설이 제시된다.

  • PDF

베이지안 다중 비교차 분위회귀 분석 기법을 이용한 비정상성 빈도해석 모형 개발 (A Development of Nonstationary Frequency Analysis Model using a Bayesian Multiple Non-crossing Quantile Regression Approach)

  • 오랑치맥 솜야;김용탁;권영준;권현한
    • 한국연안방재학회지
    • /
    • 제4권3호
    • /
    • pp.119-131
    • /
    • 2017
  • Global warming under the influence of climate change and its direct impact on glacial and sea level are known issue. However, there is a lack of research on an indirect impact of climate change such as coastal structure design which is mainly based on a frequency analysis of water level under the stationary assumption, meaning that maximum sea level will not vary significantly over time. In general, stationary assumption does not hold and may not be valid under a changing climate. Therefore, this study aims to develop a novel approach to explore possible distributional changes in annual maximum sea levels (AMSLs) and provide the estimate of design water level for coastal structures using a multiple non-crossing quantile regression based nonstationary frequency analysis within a Bayesian framework. In this study, 20 tide gauge stations, where more than 30 years of hourly records are available, are considered. First, the possible distributional changes in the AMSLs are explored, focusing on the change in the scale and location parameter of the probability distributions. The most of the AMSLs are found to be upward-convergent/divergent pattern in the distribution, and the significance test on distributional changes is then performed. In this study, we confirm that a stationary assumption under the current climate characteristic may lead to underestimation of the design sea level, which results in increase in the failure risk in coastal structures. A detailed discussion on the role of the distribution changes for design water level is provided.

진해만 침매터널 상부의 수중소음의 일변화 및 음향적 특성 (Daily change and acoustical characteristics of underwater noise on a submerged sea tunnel in Jinhae Bay, Korea)

  • 신현옥
    • 수산해양기술연구
    • /
    • 제51권3호
    • /
    • pp.461-473
    • /
    • 2015
  • Jinhae Bay located in the southern of Korean Peninsular is an important spawning area in Korea. By some preliminary studies it was measured several times that adult Pacific codes (Gadus microcephalus) were passed (swimming layer: 15 to 18 m) over a submerged sea tunnel (sea bottom: about 30 m) rather than another immigration route when the Pacific codes were tagged surgically with an acoustic transmitters and released inside of the Bay. There is a possibility that the Pacific codes and the other fishes use the route on the sea tunnel as an immigration route are affected by a human-generated underwater noise around the sea tunnel due to the sea tunnel traffic. On this study the 25-hour measurements of the underwater noise level by water layer were conducted with a hydrophone attached on a portable CTD and an underwater noise level meter during four seasons, and the acoustical characteristics of the underwater noise was analyzed. The mean traffic volume for one hour at the sea tunnel on the spring was shown the largest value of 1,408 [standard deviation (SD): 855] vehicles among four seasons measurement. The next one was ordered on the autumn [1,145 (SD: 764)], winter [947 (SD: 598)] and summer [931 (SD: 558)] vehicles. Small size vehicle was formed 84.3% of the traffic volume, and ultra-small size, medium size, large size and extra-large size of the vehicle were taken possession of 8.7%, 3.2%, 2.0% and 1.8%, respectively. On the daily change of the noise level in vertical during four seasons the noise level of 5 m-layer was shown the highest value of 121.2 (SD: 3.6) dB (re $1{\mu}Pa$), the next one was 10 m-layer [120.7 (SD: 3.5)], 2 m- and 15 m-layer [120.3 (SD: 3.5 to 3.7)] and 1 m-layer [119.2 (SD: 3.6)] dB (re $1{\mu}Pa$). In relation with the seasonal change of the noise level the average noise level measured during autumn was shown the highest value of 123.9 (SD: 2.6) dB (re $1{\mu}Pa$), the next was during summer [121.4 (SD: 3.2)], spring [118.0 (SD: 3.4)] and winter [116.5 (SD: 5.1)] dB (re $1{\mu}Pa$). In results of eigenray computation when the real bathymetry data (complicate shape of sea bed) was applied the average number of eigenray was 2.68 times (eigenrays: 11.03 rays) higher than those of model bathymetry (flat and slightly sloped sea bottom). When the real bathymetric data toward inside (water depth becomes shallow according to a distance between the source of noise and hydrophone) of the Bay was applied on the eigenrays calculation the number of the eigenray was 1.31 times (eigenrays: 12.49 rays) larger than the real bathymetric data toward outside (water depth becomes deep with respect to the distance). But when the model bathymetric data toward inside of the Bay was applied the number of the eigenray was 1.05 times (eigenrays: 4.21 rays) larger than the model bathymetric data toward outside.

지구환경 변화와 관련된 한국 연근해 해양 이상변동 (Anomalous Variation of the Oceanic Features around Korean Waters Related to the Global Change)

  • 서영상;장이현;황재동
    • 한국환경과학회지
    • /
    • 제12권3호
    • /
    • pp.257-263
    • /
    • 2003
  • Oceanographic features around Korean waters related to the global change were studied by analysis of the longterm variation of water temperature, dissolved oxygen, sea level of the surface layer with 1$^{\circ}C$ temperature, spatial position of the subpolar front in the East Sea/Japan Sea (the East sea hereafter) and the Wolf Sunspot Number. With the global warming, the temperature of Korean waters has been increased 0.5∼1.0$^{\circ}C$ for 33years (1968∼2000). In case of the dissolved oxygen in the East Sea has been decreased 0.46$m\ell$/$\ell$. Year to year vertical fluctuations of the monthly anomalies of the surface layer with 1$^{\circ}C$water in the East Sea have predominant periods with 15years as the longterm variation of Arctic climate, 12 and 18years as the El Nino-Southern Oscillation. Spatial position of the subpolar front in the East Sea moved to northern part of the sea from the southern part of the sea with the increasing sea surface temperature. The relationship between the number of Wolf Sunspot and the anomalies of sea surface temperature was very closer after the late of 1980s than those before the early of 1980s in Korean waters.

원격탐사를 이용한 한반도 주변해역의 해수면/해수온의 시·공간변동 특성 연구 (Temporal and Spatial Variations of SL/SST in the Korean Peninsula by Remote Sensing)

  • 오승열;장선웅;김대현;윤홍주
    • 수산해양교육연구
    • /
    • 제24권2호
    • /
    • pp.333-345
    • /
    • 2012
  • NOAA/AVHRR, Topex/Poseidon, and Jason-1 data were used to analyze sea surface temperatures and thermal fronts in the North East Asia Seas. Temporal and spatial analyses were based on data from 1993 to 2008. The amplitude and phase for the annual mode on SL and SST were investigated with harmonic analysis. The geographical distribution of amplitudes for comparison of SL and SST are slightly reverse in southwest-northeast tilted direction. The time series analysis conducted on the entire researched area presented consistent pattern. Peak of Sea Level was presented 1~2 months after the peak of the surface sea temperature was shown. This explains that Sea Level change occurs after the generation of surface sea temperature change in sea. The Sobel edge detection method delineated four fronts. Thermal fronts generally occurred over steep bathymetric slopes. Annual amplitudes and phases were bounded within these frontal areas.

김포충적평야의 홀로세 후기 환경변화 (The Environmental Change at Kimpo Alluvial Plain during the Upper Holocene)

  • 윤순옥;김혜령
    • 한국제4기학회지
    • /
    • 제15권2호
    • /
    • pp.83-91
    • /
    • 2001
  • 황해와 인접한 경기도 김포시 고촌면 김포평야 충적층 시료에서 화분분석과 탄소연대측정을 행하고, 한장 하류 일산지역에서 검토된 해면변동을 통하여 홀로세 후기 김포충적평야의 환경변화를 복원하였다. 화분대 I (5.8~7.0 m.a.s.l.)은 흘로세 후기 해진기인 5,000~3.200년 BP 경으로 수심이 있는 저습지 환경에서 Alnus가 중심인 목본화분 우점기였다 화분대II(7.0~7.4 m.a.s.l.)의 3,200~2,300년 BP에는 해면하강에 따른 지하수위 저하와 인간의 영향으로 Spore-NAP 우점시기로 전환된다. 아분대 Ia는 해진극상기의 특징을 반영했고, 아분대 Ib는 고해면이 정체되면서 초본류가 다소 증가했다. 아분대 IIa에는 해면이 정체 내지 미약하게 하강하여 Alnus와 함께 Spore가 크게 우점하였다. 아분대IIb에는 현저하게 낮아진 해면으로 충적평야는 건륙화되고, 농경을 반영하는 초본류가 급증하였다. 특히, Gramineae의 급증과 함께 Artemisia, Chenopodiaceae, Umbelliferae가 증가하여 문화지표식물로 간주되었다.

  • PDF

한반도의 해수면 상승을 고려한 설계조위 산정에 관한 연구 (A Study on Estimation of Design Tidal level Considering Sea Level Change in the Korean Peninsula)

  • 추태호;심수용;양다운;박상진;곽길신
    • 한국산학기술학회논문지
    • /
    • 제17권4호
    • /
    • pp.464-473
    • /
    • 2016
  • 이산화탄소의 배출 증가와 지구온난화, 엘리뇨 현상, 라니냐 현상 등과 같은 이상기후 현상의 발생빈도 증가로 인하여 전 세계적으로 내륙과 해안의 온도가 상승하고 있다. 지구온난화로 인한 바닷물의 열팽창 그리고 빙하의 해빙 등으로 인한 지구의 해수면은 매년 2.0mm/yr(전 세계 평균값)의 속도로 상승하고 있다. 그러나 해안에 인접한 수리구조물 혹은 해안 수리구조물을 설계할 시 기준이 되는 설계조위는 과거 관측된 조위 값으로부터 4대 분조 및 조화상수를 분석하거나 수치모형 실험에 의해 결정된다. 따라서, 설계조위는 구조물의 설계빈도에 상응하는 해수면의 상승속도를 감안해야 할 필요가 있다고 사료된다. 본 연구에서는 국립해양조사원(Korea Hydrographic and Oceanographic Administration; KHOA)에서 운영하고 있는 46개소의 조위관측소를 대상으로 관측개시일부터 2015년까지 시단위로 조위자료를 수집하였다. 우리나라를 크게 남해동부, 남해서부, 동해남부, 동해중부, 서해남부, 서해중부, 제주로 총 7개의 해역으로 구분하여 월별, 연별 변동추이 및 연평균 상승률 분석을 수행하였다. 향후 국지적 해수면상승의 원인규명 및 설계조위 고려 시 기초자료로 활용가능 할 것으로 판단된다.