• Title/Summary/Keyword: Sea-Level Change

Search Result 480, Processing Time 0.03 seconds

Vegetation Change and Growing Characteristics of Abies koreana Population by Altitude in Georim Valley of Mt. Jiri (지리산 거림계곡 구상나무 개체군의 고도별 식생변화와 생장특성)

  • Kim, Chang-Hwan;Jo, Min-Gi;Kim, Jong-Kab;Choi, Myung-Suk;Chung, Jae-Min;Kim, Ji-Hong;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.46 no.1
    • /
    • pp.63-70
    • /
    • 2012
  • To provide the basic information for preservation and reasonable management plan of Abies koreana population, vegetation structure and growing condition by altitude were analyzed. Six sites($400m^2$) were set up along the Georim valley in Mt. Jiri from 1,000m to 1,500m. The importance value of A. koreana in tree layer was the highest at 1,400m(site V) and 1,500m(site VI), and that of Quercus mongolica in the other site was high. In subtree layer, the importance value of A. koreana was the highest at site VI which located at 1,500m above the level of the sea. In DBH distribution, A. koreana population distributed evenly at all DBH class(below 10cm, 11-20cm, 21-30cm, above 31cm). Since 2000, the amount of tree-ring growth of A. koreana at site I, II, III, IV, V, and VI were 1.002, 0.996, 1.752, 1.850, 1.198, 0.984 mm/yr, which has decreased slowly in time for 2000, except site III.

Uncoupled Solution Approach for treating Fluid-Structure Interaction due to the Near-field Underwater Explosion (근거리 수중폭발에 따른 유체-구조 상호작용 취급을 위한 비연성 해석방법)

  • Park, Jin-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.10
    • /
    • pp.125-132
    • /
    • 2019
  • Because the water exposed to shock waves caused by an underwater explosion cannot withstand the appreciable tension induced by the change in both pressure and velocity, the surrounding water is cavitated. This cavitating water changes the transferring circumstance of the shock loading. Three phenomena contribute to hull-plate damage; initial shock loading and its interaction with the hull plate, local cavitation, and local cavitation closure then shock reloading. Because the main concern of this paper is local cavitation due to a near-field underwater explosion, the water surface and the waves reflected from the sea bottom were not considered. A set of governing equations for the structure and the fluid were derived. A simple one-dimensional infinite plate problem was considered to verify this uncoupled solution approach compared with the analytic solution, which is well known in this area of interest. The uncoupled solution approach herein would be useful for obtaining a relatively high level of accuracy despite its simplicity and high computational efficiency compared to the conventional coupled method. This paper will help improve the understanding of fluid-structure interaction phenomena and provide a schematic explanation of the practical problem.

Characteristics of Natural Habitats of Rare Species, Tofieldia nuda (희귀식물 꽃장포의 생육환경 특성)

  • Kwon, Soonsik;Hwang, In-Soo;Park, Wan-Gun;Cheong, Eun Ju
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.1
    • /
    • pp.86-106
    • /
    • 2019
  • We investigated the environmental conditions of natural habitats of T. nuda. The species was found on rocky northern hills ($60{\sim}90^{\circ}$) near the stream where the sea level ranges 95~145m. The average annual temperature of the habitats was lower than other places of South Korea. The differences of the lowest and the highest of the year was significantly huge than any other places. Plants were growing at the edge of stream that water reached but not submerged. Most of plants were found in North, Northeast or Northwest. It is suggested that these species require moist and low sunlight for growth. The common vegetation along with the T. nuda includes Mukdenia rossii, Selaginella rossii, Calamagrostis epigeios, and Rhododendron yedoense f. poukhanense. The dominance values and sociability of T. nuda were below 3 in all studied habitats and the variance of the number of individuals among the habitats was very high. As the optimum habitats for the T. nuda are decreasing due to the extreme precipitation patterns. It is also expected that the number of T. nuda will be decreased in the future. Therefore restoration activity in situ or ex situ must be conducted to conserve this valuable plant species.

Urban Street Planting Scenarios Simulation for Micro-scale Urban Heat Island Effect Mitigation in Seoul (미시적 열섬현상 저감을 위한 도시 가로수 식재 시나리오별 분석 - 서울시를 대상으로 -)

  • Kwon, You Jin;Lee, Dong Kun;Ahn, Saekyul
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.1
    • /
    • pp.23-34
    • /
    • 2019
  • Global warming becomes a serious issue that poses subsidiary issues like a sea level rise or a capricious climate over the world. Because of severe heat-wave of the summer in Korea in 2016, a big attention has been focused on urban heat island since then. Not just about heat-wave itself, many researches have been concentrated on how to adapt in this trendy warming climate and weather in a small scope. A big part of existing studies is mitigating "Urban Heat Island effect" and that is because of huge impervious surface in urban area where highly populated areas do diverse activities. It is a serious problem that this thermal context has a high possibility causing mortality by heat vulnerability. However, there have been many articles of a green infrastructures' cooling impact in summer. This research pays attention to measure cooling effect of a street planting considering urban canyon and type of green infrastructures in neighborhood scale. This quantitative approach was proceeded by ENVI-met simulation with a spatial scope of a commercial block in Seoul, Korea. We found the dense double-row planting is more sensitive to change in temperature than that of the single-row. Among the double-row planting scenarios, shrubs which have narrow space between the plant and the land surface were found to store heat inside during the daytime and prevent emitting heat so as to have a higher temperature at night. The quantifying an amount of vegetated spaces' cooling effect research is expected to contribute to a study of the cost and benefit for the planting scenarios' assessment in the future.

A Study on the Forming and Evolution of Coastal Flood Origin Deposits at Gwangseungri Coast - Based on Burial Age and Chemical Analysis - (광승리 연안의 연안범람기원퇴적층 형성과 변화 과정에 대한 연구 - 퇴적물의 매몰연대와 화학분석을 기반으로 -)

  • Shin, Won Jeong;Yang, Dong Yoon;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.25 no.3
    • /
    • pp.71-87
    • /
    • 2018
  • As part of further study on Gwangseungri coastal deposits which occurred at 10 ~ 15m above sea level and was analyzed as palaeo-coastal flood-type sediments, six burial ages of six additional samples from the two cross sections (KST1 and, KST2) near to the points of the past study were estimated and the geochemical analysis was performed. Further investigation on the cross section KST1 revealed a reversal of the burial age at the bottom of the section which was identified as palaeo-flooding sediments and supposed to have been buried about 350 years ago. At the lower part of the KST1, the burial age of the sediment layer was estimated to be 3,800 years. The lower part of KST2 sediments was identified as sediments that was formed about 6,600 years ago and about 20,000 years ago. Considering the inclination of the sediment layers, the coastal flooding sedimentsreported to have formed 700 years ago in the previousstudy are located at the top and the KST1 section analyzed in thisstudy seemed to be connected to the lower part. The chemical analysis showed that the relationship between these layers was not continuous but had a discontinuous characteristic influenced by a specific event, and the chemical composition also showed a rapid change. If we judge these together, the lowest part of Gwangseungrisediment layerseemed to have formed during the last glacial period but it was hard to find its origins clearly. On top of this layer, a fine sediment layer containing gravels was also formed.Itseemed thatsedimentation did not occur continuously, but was affected by temporary events in such a way that after a sediment layer was formed, it stopped. Since then, a coastal flooding event occurred about 700 years ago, and part of flooded sediments accumulated in the rear slope. After that, when a flood layer including additional granular materials about 350 years ago was formed, sedimentation along the slope seemed to have occurred.

Analysis of Microbial Community Change in Ganjang According to the Size of Meju (메주의 크기에 따른 간장의 미생물 군집 변화 양상 분석)

  • Ho Jin Jeong;Gwangsu Ha;Ranhee Lee;Do-Youn Jeong;Hee-Jong Yang
    • Journal of Life Science
    • /
    • v.34 no.7
    • /
    • pp.453-464
    • /
    • 2024
  • The fermentation of ganjang is known to be greatly influenced by the microbial communities derived from its primary ingredients, meju and sea salt. This study investigated the effects of changes in meju size on the distribution and correlation of microbial communities in ganjang fermentation, to enhance its fermentation process. Ganjang was prepared using whole meju and meju divided into thirds, and samples were collected at 7-day intervals over a period of 28 days for microbial community analysis based on 16S rRNA gene sequencing. At the genus level, during fermentation, ganjang made with whole meju exhibited a dominance of Chromohalobacter (day 7), Pediococcus (day 14), Bacillus (day 21), and Pediococcus (day 28), whereas ganjang made with meju divided into thirds consistently showed a Pediococcus predominance over the 28 days. Beta-diversity analysis of microbial communities in ganjang with different meju sizes revealed significant separation of microbial communities at fermentation days 7 and 14 but not at days 21 and 28 across all experimental groups. The linear discriminant analysis effect size (LEfSe) was determined to identify biomarkers contributing to microbial community differences at days 7 and 14, showing that on day 7, potentially halophilic microbes such as Gammaproteobacteria, Firmicutes, Oceanospirillales, Halomonadaceae, Bacilli, and Chromohalobacter were prominent, whereas on day 14, lactic acid bacteria such as Pediococcus acidilactici, Lactobacillaceae, Pediococcus, Bacilli, Leuconostocaceae, and Weissella were predominant. Furthermore, correlation analysis of microbial communities at the genus and species levels revealed differences in correlation patterns between meju sizes, suggesting that meju size may influence microbial interactions within ganjang.

The Geomorphological Changes of Lagoons by Human Impact during the Holocene: Focusing on Cheongchoho, Gyeongpoho, and Pungho Lagoons (홀로세 인간 간섭에 의한 석호의 지형 변화: 청초호, 경포호, 풍호를 중심으로)

  • Ji Yun Jeong;Haebin Lee;Gwang-Ryul Lee
    • The Korean Journal of Quaternary Research
    • /
    • v.34 no.1
    • /
    • pp.1-13
    • /
    • 2024
  • Lagoon, attributed to the postglacial sea-level rise, has experienced rapid geomorphological changes due to increasing human impact. This study tried to infer how rapidly increasing human impact during the Holocene affects on geomorphological changes of lagoons and their surroundings, especially on Cheongchoho, Gyeongpoho and Pungho with significant changes in area and shapes. It was confirmed that the period of rapid artificial change commonly began in the 1960s to 1970s and geomorphological landscape rapidly changed since human impact intensified afterward. Intensive development not only affected on depth, area and shape changes, but also had significant impacts on water environment and biodiversity, attributed to disturbed flow between freshwater and seawater due to dredging and the installation of artificial structures. Lastly, various types of human impact were observed to be complexly interrelated, which seems to be associated with the geomorphologic process influenced by both terrestrial and marine environments. It is thought to be the result of complex interactions between humans who develop and utilize the terrain and changes in environmental conditions.

Growth environment characteristics of the habitat of Epilobium hirsutum L., a class II endangered wildlife species

  • Kwang Jin Cho;Hyeong Cheol Lee;Sang Uk Han;Hae Seon Shin;Pyoung Beom Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.4
    • /
    • pp.282-289
    • /
    • 2023
  • Background: As wildlife habitats are being destroyed and growth environments are changing, the survival of animals and plants is under threat. Epilobium hirsutum L., a species that inhabits wetlands, has held legally protected status since 2012. However, no specific measures are currently in place to protect its habitat, leading to a decline in remaining populations as a result of land use change and human activities. Results: The growth environment (including location, climate, land use, soil, and vegetation) of the five habitat sites (Samcheok, Taebaek1, Taebaek2, Cheongsong, Ulleung) of E. hirsutum L. was investigated and analyzed. These habitats were predominantly situated in flat areas with gentle south-facing slopes, at an average altitude of 452.7 m (8-726 m) above sea level in Gangwon-do and Gyeongsangbuk-do. The average annual temperature ranged 11.5℃ (9.2℃-12.9℃), whereas the average annual precipitation ranged 1,304.5 mm (1,062.7-1,590.7 mm). The surrounding land use status was mainly characterized by mountainous areas, and human interference, such as agricultural land and roads, was commonly found in proximity to these natural habitats. Soil physicochemical analysis revealed that the soil was predominantly sandy loam with a slightly high sand content. The average pH measured 7.64, indicating an alkaline environment, and electrical conductivity (EC) averaged 0.33 dS/m. Organic matter (OM) content averaged 66.44 g/kg, available phosphoric acid (P2O5) content averaged 115.73 mg/kg, and cation exchange capacity (CEC) averaged 23.43 cmolc/kg. The exchangeable cations ranged 0.09-0.43 cmol+/kg for potassium (K), 10.23-16.21 cmol+/kg for calcium (Ca), 0.67-4.94 cmol+/kg for magnesium (Mg), and 0.05-0.74 cmol+/kg for sodium (Na). The vegetation type was categorized as E. hirsutum community with high numbers of E. hirsutum L., Persicaria thunbergii (Siebold & Zucc.) H. Gross, Phragmites japonica Steud., Humulus japonicus (Siebold & Zucc.), and Bidens frondosa L.. An ecological flora analysis, including the proportion of lianas, naturalized plants, and annual herbaceous plants, revealed that the native habitat of E. hirsutum L. was ecologically unstable. Conclusions: Analysis of the habitat of E. hirsutum L., a class II endangered wildlife species, provided essential data for local conservation and restoration efforts.

Changes of Stress Response and Physiological Metabolic Activity of Flounder, Paralichthys olivaceus Following to Food Deprivation and Slow Temperature Descending (먹이제한과 단기 수온하강 조건에서 넙치의 스트레스 반응과 생리학적 대사활성 변화)

  • Myeong, Jeong-In;Kang, Duk-Young;Kim, Hyo-Chan;Lee, Jeong-Ho;Noh, Jae-Koo;Kim, Hyun-Chul
    • Korean Journal of Ichthyology
    • /
    • v.23 no.2
    • /
    • pp.87-94
    • /
    • 2011
  • To find the preliminary environmental conditions for a short-time transport of living olive flounder, Paralichthys olivaceus, the stress response and physiological metabolic activity of the cultured fish to feed deprivation and slow temperature descending ($15.8^{\circ}C{\rightarrow}13.3^{\circ}C$) were monitored for 8 days. The monitored variables were the plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), total protein (TP), electrolytes ($Na^+$, $K^+$, $Cl^-$) and thyroid hormones ($TT_4$, $TT_3$, $FT_4$ and $FT_3$). In food deprivation experiment for 8 days, we did not find any statistical change of level in AST, ALT and electrolytes ($Na^+$, $K^+$, $Cl^-$), but found a significant decrease in TP and GLU. In thyroid hormones, the levels of four hormones in plasma were all showing a tendency to decrease. Especially, $FT_4$ and $TT_3$ were significantly decreased, indicating a withering of physiologic activity. In the temperature test, although no any significant change in AST, TP and electrolytes ($Na^+$, $K^+$, $Cl^-$), we observed a significant decrease of ALT and GLU following to temperature descending from $15.8^{\circ}C$ to $13.3^{\circ}C$ (P<0.05). In the levels of thyroid hormones, any significant change was not observed for experimental period. We conclude that the stress response and physiological activity of olive flounder were more influenced by feed deprivation than slow temperature descending at a transport of living fish, and plasma GLU appears to be sensitive factor to physiological metabolic activity, indicating that it could be used as a monitering mark or index for a health inspection of the fish.

Understanding Chemical Characteristics of Seepage Water and Groundwater in a Coastal LPG Storage Cavern using Factor and Cluster Analyses (인자 및 군집분석을 통한 해안 LPG공동 유출수 및 지하수 수질특성의 이해)

  • Jo, Yun-Ju;Lee, Jin-Yong
    • Economic and Environmental Geology
    • /
    • v.42 no.6
    • /
    • pp.599-608
    • /
    • 2009
  • This study was conducted to examine chemical characteristics and correlations among seepage water, subsurface waters and inland groundwater in and around a coastal underground LPG cavern using factor and cluster analyses. The study area is located in western coast of Incheon metropolitan city and is about 8 km off the coast. The LPG cavern storing propane and butane was built beneath artificially reclaimed island. Mean bathymetry is 8.5 m and maximum sea level change is 10 m. Water sampling was conducted in May and August, 2006 from 22 sampling points. Correlation analysis showed strong correlations among $Fe^{2+}$ and $Mn^{2+}$ (r=0.83~0.99), and Na and Cl (r=0.70~0.97), which indicated reductive dissolution of iron and manganese bearing minerals and seawater ingression effect, respectively. According to factor analysis, Factors 1 (May) and I (August) showed high loadings for parameters representing seawater ingression into the cavern and effect of submarine groundwater discharge, respectively while Factors 2 and IV showed high loadings for those representing oxidation condition (DO and ORP). Factors 4 and II have large positive loadings for $Fe^{2+}$ and $Mn^{2+}$. The increase of $Fe^{2+}$ and $Mn^{2+}$ was related to decomposition of organic matter and subsequent their dissolution under reduced condition. Cluster analysis showed the resulting 6 groups for May and 5 groups for August, which mainly included groups of inland groundwater, cavern seepage water, sea water and subsurface water in the LPG storage cavern. Subsurface water (Group 2 and Group III) around the underground storage cavern showed high EC and major ions contents, which represents the seawater effect. Cavern seepage water (Group 5 and Group II) showed a reduced condition (low DO and negative ORP) and higher levels of $Fe^{2+}$ and $Mn^{2+}$.