• Title/Summary/Keyword: Sea surface wavenumber spectrum

Search Result 4, Processing Time 0.022 seconds

Application of Wavelet Spectrum Analysis to Horizontal Structure of Sea Surface Temperature

  • Suwa, Jun
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.257-261
    • /
    • 1998
  • Two-dimensional wavelet spectrum analysis is applied to Advanced Very High Resolution Radiometer (AVHRR) images from the NOAA meteorological satellites in the area around Japan to unfold the horizontal structure of SST into space and scale (wavenumber), which can yield localized space-wavenumber information. The results reveal significantly new and previously unexplored insights on horizontal structure of sea surface temperature, which cannot be revealed using a traditional Fourier transform approach.

  • PDF

Measurement and simulation of high-frequency bistatic sea surface scattering channel in shallow water of Geoje bay (거제 내만해역에서의 고주파 양상태 해수면 음파산란 채널 측정 및 모의)

  • Choi, Kang-Hoon;Kim, Yongbin;Kim, Sea-Moon;Choi, Jee Woong
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.1-9
    • /
    • 2021
  • High-frequency bistatic sea surface scattering channels according to sea state were measured at an experimental site of Geoje bay in April 2020, and compared with predictions based on scattering theory. A linear frequency-modulated signal with a center frequency of 128 kHz and a bandwidth of 32 kHz was used for the acoustic measurements. Sea surface wavenumber spectrum was calculated from surface roughness data measured by a wave buoy, and bistatic scattering cross-section of Small Slope Approximation (SSA) based on the wavenumber spectrum was estimated. In addition, scattering from near-surface bubbles using wind speed measured during experiments was considered. Surface scattering channel intensity impulse responses were simulated using the scattering cross-section and the simulation results were compared and analyzed with the field data.

Enhanced Recovery of Gravity Fields from Dense Altimeter Data

  • Kim, Jeong-Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.14 no.2
    • /
    • pp.127-139
    • /
    • 1996
  • This paper presents a procedure to recover sea surface heights (SSH) and free-air (FA) gravity anomalies from dense satellite altimeter SSH data with enhanced accuracies over the full spectrum of the gravity field. A wavenumber correlation filtering (WCF) of co-linear SSH tracks is developed for the coherent signals of sub-surface geological masses. Orbital cross-over adjustments with bias parameters are applied to the filtered SSH data, which are then separated into two groups of ascending and descending tracks and gridded with tensioned splines. A directional sensitive filter (DSF) is developed to reduce residual errors in the orbital adjustments that appear as track patterned SSH. Finally, FA gravity anomalies can be obtained by the application of a gradient filter on a high resolution estimate of geoid undulations after subtracting dynamic sea surface topography (DSST) from the SSH. These procedures are applied to the Geosat Geodetic Mission (GM) data of the southern oceans in a test area of ca. $900km\;\times{1,200}\;km$ to resolve geoid undulations and FA gravity anomalies to wavelengths of-10 km and larger. Comparisons with gravity data from ship surveys, predictions by least squares collocation (LSC), and 2 versions of NOAA's predictions using vertical deflections illustrate the performance of this procedure for recovering all elements of the gravity spectrum. Statistics on differences between precise ship data and predicted FA gravity anomalies show a mean of 0.1 mgal, an RMS of 3.5 mgal, maximum differences of 10. 2 mgal and -18.6 mgal, and a correlation coefficient of 0.993 over four straight ship tracks of ca. 1,600 km where gravity changes over 150 mgals.

  • PDF

Accuracy Verification of Theoretical Models for Estimating Microwave Reflection from Rough Sea Surfaces (거친 바다표면의 마이크로파 반사 계산을 위한 이론적 모델 정확도 검증)

  • Park, Sinmyong;Oh, Yisok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.788-793
    • /
    • 2017
  • This paper presents the verification of accuracies of theoretical models for calculating the microwave reflections from rough sea surfaces. First of all, the Pierson-Moskowitz ocean spectrum was used to generate the rough sea surfaces. Then the relationship between the significant wave heights, root-mean-square(RMS) heights and wind speed was derived by estimating the significant wave heights and RMS heights of the generated sea surfaces according to various wind speeds, and compared the derived relationship with other measurement data sets. The reflection coefficients of the sea surfaces were calculated by using a numerical method(the moment method). Then, the numerical results were compared with Ament model, PO(Physical Optics) model, GO(Geometrical Optics) model and B-M(Brown-Miller) model for various roughness conditions(wind speed) and incidence angles. It was found that the Ament model is not accurate except for a very low roughness conditions($kh_{rms}$<0.4, k is wavenumber and $h_{rms}$ is RMS height). It was also found that at incidence angles lower than $70^{\circ}$, the PO and the GO models agree well with the numerical results, while the B-M model agrees well with the numerical analysis results at incidence angles higher than $80^{\circ}$ for very rough sea surfaces with $kh_{rms}$>10.