• Title/Summary/Keyword: Sea surface temperature (SST)

Search Result 345, Processing Time 0.024 seconds

Variations of Marine Environments and Zooplankton Biomass in the Yellow Sea During the Past Four Decades (우리나라 서해에서의 해양환경변화와 동물부유생물의 장기간의 출현량 변화)

  • Choi, Jung-Wha;Park, Won-Gyu
    • Journal of Fisheries and Marine Sciences Education
    • /
    • v.25 no.5
    • /
    • pp.1046-1054
    • /
    • 2013
  • Spatial and temporal variations of sea surface temperature (SST), abundances of copepods, euphausiids, amphipods, and chaetognaths were investigated in the western waters of the Korean Peninsula. Zooplankton and SST were monitored at 63 stations arrayed in six transects ($124^{\circ}00^{\prime}-126^{\circ}30^{\prime}E$, $34^{\circ}00^{\prime}-37^{\circ}00^{\prime}N$) in February, April, June, August, October, and December during 1978-2010. In general, SST increased $0.7-3.8^{\circ}C$ during the last three decades with spatio-temporal variations. SST was lowest in February and highest in August. SST was highest in the northernmost transect and declined gradually along transects to the south. The general pattern of interannual variations of SST was similar to the global pattern, which has been increasing. Trends of abundances of all zooplankton groups slightly increased interannually and peaked seasonally in June and August, except chaetognaths, which fluctuated around the long-term mean value with a seasonal peak in August and October. Abundances of zooplankton groups were highest in the northernmost transect while those of euphausiids were highest in the southern transect. We discuss the distribution patterns of SST and zooplankton groups in relation to oceanographic characteristics in the study area.

Vertical Temperature Profile in the Yellow Sea according to the Variations of Air Temperature

  • CHO Kyu-Dae;CHO Kwang-Woo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 1988
  • The vertical temperature profiles of the Yellow Sea in summer are investigated by means of the nine air temperature (AT) patterns which are classified with the AT of winter and summer. The sea surface temperature (SST) is high when the AT of summer is high, and vice versa. The gradient of thermocline in the offshore region is higher than that in the coastal region and is not always favorable with the AT patterns. The relation between sea bottom temperature (SBT) and the AT of winter is favorable when the SBT is averaged in the coastal and offshore stations. In addition, the SST of coastal stations is higher than that of offshore stations because of the strong mixing by the tidal current in the coastal region. The correlation between the AT and the SST of August is favorable (r=0.44-0.69), while the correlation between the AT of February and the SBT of August is not favorable except the stations, A2 (r=0.57) and B2 (r=0.61).

  • PDF

SL/SST variations and their correlations in the North East Asian Sens by remote sensing (Topex/Poseidon, NOAA)

  • Yoon, Hong-Joo
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2003.04a
    • /
    • pp.297-299
    • /
    • 2003
  • Altimeter(Topex/Poseidon) and AVHRR(NOAA) data were used to study the variations and correlations of Sea Level(SL) and Sea Surface Temperature (SST) in the North East Asian Seas from November 1993 to May 1998. This region is influenced simultaneously to continental and oceanic climate as the border of the East Sea(Japan Sea). SL and SST have increased gradually every year because the global warming, and presented usually a strong annual variations in Kuroshio extension region with the influence of bottom topography.

  • PDF

Upwelling in the southwest region of the East Sea in July, 2013 (2013년 7월 동해 남서 해역의 용승)

  • Choi, Yong-Kyu
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.51 no.2
    • /
    • pp.212-220
    • /
    • 2015
  • We examined the appearance of cold water in the southwest region of the East Sea, based on the sea surface temperature (SST) at the east coast of Korea and buoy data in Donghae ($37^{\circ}31$'N, $130^{\circ}00$'E, 80 km east away from Donghae port) and Pohang ($36^{\circ}21$'N, $129^{\circ}46$'E, 35 km east away from Ganggu port) from June to August in 2013. Also, the serial oceanographic data of National Fisheries Research and Development Institute (NFRDI) were used to see the oceanographic conditions for June and August in 2013. The SST anomaly at the east coast showed negative values in $3{\sim}6^{\circ}C$ from 2 July. At Janggigab, the SST anomaly showed negative value amount to $10^{\circ}C$ in 8 July. The negative values of SST anomaly continued to the middle of August at Janggigab. The wind speed was 6~11 m/s and the direction was south-southwestly in 1 July. The wind speed amounts to 6~16 m/s in 2 July. It means that the strong wind induced the upwelling effect by a day. The temperature was lower than normal at the depth in 20 m of the East Sea in June and August. The air pressure was 996~998 hPa in the beginning of July. It was the lowest air pressure during the studied period. The correlation was 0.3 between the SST anomaly and air pressure. It was suggested that the appearance of cold water in the East Sea was influenced by a stirring due to wind and low air pressure as well as coastal upwelling.

Typhoon Simulation with a Parameterized Sea Surface Cooling (모수화된 해면 냉각을 활용한 태풍 모의 실험)

  • Lee, Duho;Kwon, H. Joe;Won, Seong-Hee;Park, Seon Ki
    • Atmosphere
    • /
    • v.16 no.2
    • /
    • pp.97-110
    • /
    • 2006
  • This study investigates the response of a typhoon model to the change of the sea surface temperature (SST) throughout the model integration. The SST change is parameterized as a formulae of which the magnitude is given as a function of not only the intensity and the size but the moving speed of tropical cyclone. The formulae is constructed by referring to many previous observational and numerical studies on the SST cooling with the passage of tropical cyclones. Since the parameterized cooling formulae is based on the mathematical expression, the resemblance between the prescribed SST cooling and the observed one during the period of the numerical experiment is not complete nor satisfactory. The agreements between the prescribed and the observed SST even over the swath of the typhoon passage differ from case to case. Numerical experiments are undertaken with and without prescribing the SST cooling. The results with the SST cooling do not show clear evidence in improving the track prediction compared to those of the without-experiments. SST cooling in the model shows its swath along the incomplete simulated track so that the magnitude and the distribution of the sea surface cooling does not resemble completely with the observed one. However, we have observed a little improvement in the intensity prediction in terms of the central pressure of the tropical cyclone in some cases. In case where the model without the SST treatment is not able to yield a correct prediction of the filling of the tropical cyclone especially in the decaying stage, the pulling effect given by the SST cooling alleviates the over-deepening of the model so that the central pressure approaches toward the observed value. However, the opposite case when the SST treatment makes the prediction worse may also be possible. In general when the sea surface temperature is reduced, the amount of the sensible and the latent heat from the ocean surface become also reduced, which results in the weakening of the storms comparing to the constant SST case. It turns out to be the case also in our experiments. The weakening is realized in the central pressure, maximum wind, horizontal temperature gradient, etc.

Correlation between the Pacific Decadal Oscillation and East/Japan Sea SST in the Autumn (가을철 동해 표층 수온과 태평양 순년 진동의 상관성 분석)

  • PAK, GYUNDO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.24 no.4
    • /
    • pp.509-518
    • /
    • 2019
  • Analyses with various Sea Surface Temperature (SST) products indicate that the interannual variability of the area-averaged SST in the East/Japan Sea (EJS) is well correlated to that of Pacific Decadal Oscillation (PDO) during 1979-2018, especially in the autumn. The regression analysis with the wind vectors at 200 hPa, where the strongest jet stream flows, suggests that the long-term variability of the intensity as well as the meridional movement of the jet stream are related to the coupling of the autumn EJS SST and PDO. When the axis of the jet stream moves poleward (equatorward) with its weakening (strengthening), both the EJS SST and North Pacific SST increase (decrease). This suggests that both the intensity and meridional movement of the jet stream are possibly related to the coupling of the autumn EJS SST and PDO. However, effects of a weak jet stream during the summer and the strong East Asian winter monsoon make weak coupling between the EJS SST and PDO.

Study on the Cold Mass Occurrence in the Eastern Coast of the Korean Peninsula in Summer (하계 한국동해안 냉수대 발생의 시공간적 분포특성)

  • Suh Young-Sang;Hwang Jae-Dong
    • Journal of Environmental Science International
    • /
    • v.14 no.10
    • /
    • pp.945-953
    • /
    • 2005
  • Daily time series of longshore sea surface temperature (SST) data at 3 stations, sea surface SST data at 58 stations in the eastern coast of the Korean Peninsular from 2001 to 2005 were used in order to study the temporal and spatial variations of the upwelling coastal cold water occurred in summer season. When the cold water occurred, SST has been decreased more than $-5^{\circ}C$ in a day. The cold water occurred frequently in the eastern coastal areas of Korea such as Ulgi, Kampo, Jukbyun. Daily variations of cold water temperature were quantified using remote control buoy system at Kijang in the southeastern coastal water from July to August in 2004. Hourly variations of SST occurred around $\pm3^{\circ}C$ when cold water disappeared at Kijang. There were close relationship between the strength of East Korean Warm Current, North Korean Cold Water and the scale of spatio-temporal cold water variations in summer season.

Effect of Sea Surface Temperature Gradient Induced by the Previous Typhoon's Cold Wake on the Track of the Following Typhoon: Bolaven (1215) and Tembin (1214) (선행 태풍의 해수 냉각에 의한 해수면 온도 경도가 후행 태풍의 진로에 미치는 영향: 볼라벤(1215)과 덴빈(1214))

  • Moon, Mincheol;Choi, Yumi;Ha, Kyung-Ja
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.635-647
    • /
    • 2016
  • The effects of sea surface temperature (SST) gradient induced by the previous typhoon on the following typhoon motion over East Asia have been investigated using Weather Research and Forecasting (WRF) model for the previous Typhoon Bolaven (1215) and following Typhoon Tembin (1214). It was observed that Typhoon Bolaven remarkably reduced SST by about $7^{\circ}C$ at Yellow Sea buoy (YSbuoy). Using the WRF experiments for the imposed cold wake over West of Tembin (WT) and over East of Tembin (ET), this study demonstrates that the effects of eastward SST gradient including cold wake over WT is much significant rather than that over ET in relation to unexpected Tembin's eastward deflection. This difference between two experiments is attributed to the fact that cold wake over WT increases the magnitude of SST gradient under the eastward SST gradient around East Asia and the resultant asymmetric flow deflects Typhoon Tembin eastward, which is mainly due to the different atmospheric response to the SST forcing between ET and WT. Therefore, it implies that the enhanced eastward SST gradient over East Asia results in larger typhoon deflection toward the region of warmer SST according to the location of the cold wake effect. This result can contribute to the improvement of track prediction for typhoons influencing the Korean Peninsula

Evaluation of Sea Surface Temperature Prediction Skill around the Korean Peninsula in GloSea5 Hindcast: Improvement with Bias Correction (GloSea5 모형의 한반도 인근 해수면 온도 예측성 평가: 편차 보정에 따른 개선)

  • Gang, Dong-Woo;Cho, Hyeong-Oh;Son, Seok-Woo;Lee, Johan;Hyun, Yu-Kyung;Boo, Kyung-On
    • Atmosphere
    • /
    • v.31 no.2
    • /
    • pp.215-227
    • /
    • 2021
  • The necessity of the prediction on the Seasonal-to-Subseasonal (S2S) timescale continues to rise. It led a series of studies on the S2S prediction models, including the Global Seasonal Forecasting System Version 5 (GloSea5) of the Korea Meteorological Administration. By extending previous studies, the present study documents sea surface temperature (SST) prediction skill around the Korean peninsula in the GloSea5 hindcast over the period of 1991~2010. The overall SST prediction skill is about a week except for the regions where SST is not well captured at the initialized date. This limited prediction skill is partly due to the model mean biases which vary substantially from season to season. When such biases are systematically removed on daily and seasonal time scales the SST prediction skill is improved to 15 days. This improvement is mostly due to the reduced error associated with internal SST variability during model integrations. This result suggests that SST around the Korean peninsula can be reliably predicted with appropriate post-processing.

Surface Heat Flux and Oceanic Heat Advection in Sendai Bay

  • Yang Chan-Su;Hanawa Kimio
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.1
    • /
    • pp.11-24
    • /
    • 2006
  • Coastal sea surface temperature (CSST) and meteorological data from January through December 1995 are used to estimate the net surface heat flux and heat content for Sendai Bay. The average annual surface heat flux in the area north of the bay is estimated to be $+35Wm^{-2}$, whereas the southwestern area is estimated to be $+56Wm^{-2}$. Therefore, the net surface heat flux shows a net gain of heat over the whole bay. The largest heat gain occurs near Matsukawaura, where the strong Kuroshio/Oyashio interaction produces anomalously cold SST and wind is more moderate than in other regions of Sendai Bay over most of the year. The lowest heat gain occurs around Tashiro Island, where the temperature difference between air and sea surface is lower and wind is stronger. The heat budget shows that both surface forcing and horizontal advection are potentially important contributors to the seasonal evolution of CSST in the bay. From the A VHRR and SeaWiFS data, it is found that offshore conditions between the bay and Eno Island are different due to the presence of the Ojika Peninsula. It is also shown that the temporal behaviors of SSTs in the bay are closely connected with the air-sea heat flux and offshore conditions.