• Title/Summary/Keyword: Sea surface current

Search Result 535, Processing Time 0.032 seconds

A Numerical Modeling of the East sea circulation (동해 순환의 수치모델)

  • Seung, Young-Ho;Kim, Kyun
    • 한국해양학회지
    • /
    • v.28 no.4
    • /
    • pp.292-304
    • /
    • 1993
  • The east Sea circulation is numerically modeled with refined grid resolution elaborated open boundary condition, and by directly imposing the measured surface temperature and salinity typical the east Korean Warm current are clearer than those in previous works. among others, The Ulleung warm Water and the Intermediate Water of minimum salinity are nicely reproduced. The latter is formed in the northern/northwestern coastal region in winter and is advocated southward by strong under-current. the former is associated with a locally generated anti-cyclonic gyres. The model indicates strong seasonal variation of Nearshore Current along the Japanese coast from wintertime barotropic to summertime baroclinic structures. the associated strong reversed under-cur-rent in summer is not well understood. Global circulation pattern is characterized by two regions of cyclonic and anti-cyclonic gyres in the north and south, respectively. The presence of these gyres indicates importance of local dynamics in East Sea circulation. This model, however, does not completely resolve the problem of overshooting of the East Korean Warm current.

  • PDF

Comparison of Fish Species Composition Collected by Set Net at Hupo in Gyeong-Sang-Buk-Do, and Jangho in Gang-Won-Do, Korea (경상북도 후포와 강원도 장호에서 정치망으로 채집된 어류 종조성 비교)

  • Kang, Jung-Ha;Kim, Yi-Gyeong;Park, Jung-Youn;Kim, Jin-Koo;Ryu, Jung-Hwa;Kang, Chung-Bae;Park, Jeong-Ho
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.47 no.4
    • /
    • pp.424-430
    • /
    • 2014
  • Two major temperature fronts, the Subpolar (Gosung, Gang-won-do; $38^{\circ}-41^{\circ}N$) and Thermal (Jukbyun, Gyeong-sang-buk-do; $36^{\circ}-37^{\circ}N$) fronts, are found in the East Sea along the east coast of Korea. These are located roughly where the Tsushima Warm Current and North Korea Cold Current intersect. To clarify the effect of the Thermal Front, we investigated seasonal variation in fish species composition using set nets in two areas located north (Jangho, Gang-won-do) and south (Hupo, Gyeong-sang-buk-do) of Jukbyun, Gyeong-sang-buk-do, and compared the sea water temperature and salinity. We collected a total of 38 fish species in Hupo and 25 in Jangho. Trachurus japonicus was the most common species at both sites, but the subdominant species differed. At Hupo, the subdominant species were Konosirus punctatus and Diodon holocanthus, whereas Clupea pallasii and Scomber japonicus were subdominant at Jangho. Based on Froese and Pauly (2014), subtropical fishes accounted for 55% of fish in Hupo but only for 33% in Jangho. The difference in fish species composition was most obvious in May and August. According to the Korea Hydrographic and Oceanographic Administration, sea surface temperature and salinity were slightly higher at Hupo than at Jangho. Our findings suggest that the oceanographic boundary resulting from the Thermal Front near Jukbyun, Gyeong-sang-bukdo may have a major effect on the distribution of migratory fish species.

In-situ and remote observation of Cochlodinium.p blooms and consequences of physical features off the Korean coast

  • Ahn Yu-Hwan;Shanmugam P.;Ryu Joo-Hyung
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.553-556
    • /
    • 2004
  • Spatial and temporal aspects of toxic dinoflagellate Cochlodinium.p blooms and consequences of physical features in complex coastal ecosystems, off the southern Korean coast, have been investigated using data obtained from SeaWiFS and AVHRR as well as in-situ observations. Hydrographic parameters measured using CTD sensors were used to elucidate physical factors affecting the spatial distribution and abundance of Cochlodinium.p blooms. The results show spatial and temporal variations of chlorophyll-a (Chl-a) and sea surface temperature (SST) and reveal significant information about Cochlodinium.p blooms and process underlying their evolution. Satellitederived Chl-a estimates appear to be potential in explicating the evolution, movement and distribution of Cochlodinium.p blooms in the enclosed bays of the South Sea. The existence of thromohaline waters offshore provide favorable conditions for the rapid growth and subsequent southward initiation of Cochlodinium.p blooms that are influenced to flow on the offshore branch (OB) during September. It was observed that there was a significant variation in the sun-induced chlorophyll-a fluorescence signal in the remote sensing fluorescence spectra and its high-intensity was recognized during the period of exponential growth and physical transport. Satellite-derived Chl-a concentration during September 1999 ranged between $3­60mg/m^3$ inside the Jin-hae and adjacent Bays and $1-6mg/m^3$ in offshore waters, with varying Cochlodinium.p abundances 1500 to 26000 cells $ml^{-1}.$ The closely spaced CTD surveys and satellite-derived SST give a complete overview on the initiation of Cochlodinium.p blooms in hydrodynamically active regions of the offshore southern East Sea by the influence of Tsushima Warm Current (TWC).

  • PDF

LNG-Vessels Hybrid Engine Seawater Desalination Complex System (LNG 선박 하이브리드 엔진 및 해수 담수화 복합 시스템)

  • Lim, Jae Jun;Lee, Dong-Heon;Byun, Gi-Sik;Kim, Gwan-Hyung
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.663-664
    • /
    • 2016
  • Temperature difference power generation using sea water is a method repeatedly closed liquefaction and gasification by using the ammonia (refrigerant) of the deep sea water and surface water with a temperature difference between turning the turbine. The larger the temperature difference between the nature of the temperature characteristic energy generation development, the better. This is the story that the surface waters of the deep-water temperature difference is large. But the winter is not large temperature difference between surface water and deep water has lowered energy efficiency. And desalination technologies accounted for 97% of the earth, but we can not eat the technology to convert sea water into fresh water, fresh water produced by the desalination technology that is available for various industries such as irrigation, drinking water in the vessel.In this paper, LNG transport vessels, based on the LNG transport ship to the temperature difference power generation using cold energy of thermal energy and LNG marine diesel engines, which use the existing order to improve the temperature of the surface waters of the season that is the current problem we propose that a complex development of desalination and desalination of seawater freezing research into hybrid research and utilizing the cold energy of the engine.

  • PDF

Analysis of Surface Water Temperature Fluctuation and Empirical Orthogonal Function in Cheonsu Bay, Korea

  • Hyo-Sang Choo;Jin-Young Lee;Kyeung-Ho Han;Dong-Sun Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.3
    • /
    • pp.255-269
    • /
    • 2023
  • Surface water temperature of a bay (from the south to the north) increases in spring and summer, but decreases in autumn and winter. Due to shallow water depth, freshwater outflow, and weak current, the water temperature in the central to northern part of the bay is greatly affected by the land coast and air temperature, with large fluctuations. Water temperature variations are large in the north-east coast of the bay, but small in the south-west coast. The difference between water temperature and air temperature is greater in winter and in the south-central part of the bay than that in the north to the eastern coast of the bay where sea dykes are located. As the bay goes from south to north, the range of water temperature fluctuation and the phase show increases. When fresh water is released from the sea dike, the surrounding water temperature decreases and then rises, or rises and then falls. The first mode of empirical orthogonal function (EOF) represents seasonal variation of water temperature. The second mode represents the variability of water temperature gradient in east-west and north-south directions of the bay. In the first mode, the maximum and the minimum are shown in autumn and summer, respectively, consistent with seasonal distribution of surface water temperature variance. In the second mode, phases of the coast of Seosan~Boryeong and the east coast of Anmyeon Island are opposite to each other, bordering the center of the deep bay. Periodic fluctuation of the first mode time coefficient dominates in the one-day and half-day cycle. Its daily fluctuation pattern is similar to air temperature variation. Sea conditions and topographical characteristics excluding air temperature are factors contributing to the variation of the second mode time coefficient.

Numerical Simulation of Effect on Atmospheric Flow Field by Development of Coastal Area (임해지역의 개발이 기상장에 미치는 영향예측)

  • Lee, Sang-Deug;Mun, Tae-Ryong
    • Journal of Environmental Science International
    • /
    • v.15 no.10
    • /
    • pp.919-928
    • /
    • 2006
  • The present study applied an atmospheric flow field model in Gwangyang-Bay which can predict local sea/land breezes formed in a complex terrain lot the development of a model that can predict short term concentration of air pollution. Estimated values from the conduct of the atmospheric flow field were used to evaluate and compare with observation data of the meteorological stations in Yeosu and the Yeosu airport, and the effect of micrometeorology of surround region by the coastal area reclamation was predicted by using the estimated values, Simulation results, a nighttime is appeared plainly land breezes of the Gwangyang-bay direction according to a mountain wind that formed in the Mt. of Baekwooun, Mt. of Youngchui. Land winds is formed clockwise circulation in the north, clockwise reverse direction in the south with Gangyang-bay as the center. Compared with model and observation value, Temperature is tend to appeared some highly simulation value in the night, observation value in the daytime in two sites all, but it is veil accorded generally, the pattern of one period can know very the similarity. And also, wind speed and wind direction is some appeared the error of observation value and calculation results in crossing time of the land wind and sea land, it can see that reproducibility is generally good, is very appeared the change land wind in the nighttime, the change of sea wind in the daytime. And also, according to change of the utilization coefficient of soil before and after development with Gwangyang-Bay area as the center. Temperature after development was high $0.55\sim0.67^{\circ}C$ in the 14 hoots, also was tend to appear lowly $0.10\sim0.22^{\circ}C$ in the 02 hours, the change of u, v component is comparatively tend to reduced sea wind and land wind, it is affected ascending air current and frictional power of the earth surface according to inequality heating of the generation of earth surface.

Predictability of Sea Surface Temperature in the Northwestern Pacific simulated by an Ocean Mid-range Prediction System (OMIDAS): Seasonal Difference (북서태평양 중기해양예측모형(OMIDAS) 해면수온 예측성능: 계절적인 차이)

  • Jung, Heeseok;Kim, Yong Sun;Shin, Ho-Jeong;Jang, Chan Joo
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.53-63
    • /
    • 2021
  • Changes in a marine environment have a broad socioeconomic implication on fisheries and their relevant industries so that there has been a growing demand for the medium-range (months to years) prediction of the marine environment Using a medium-range ocean prediction model (Ocean Mid-range prediction System, OMIDAS) for the northwest Pacific, this study attempted to assess seasonal difference in the mid-range predictability of the sea surface temperature (SST), focusing on the Korea seas characterized as a complex marine system. A three-month re-forecast experiment was conducted for each of the four seasons in 2016 starting from January, forced with Climate Forecast System version 2 (CFSv2) forecast data. The assessment using relative root-mean-square-error was taken for the last month SST of each experiment. Compared to the CFSv2, the OMIDAS revealed a better prediction skill for the Korea seas SST, particularly in the Yellow sea mainly due to a more realistic representation of the topography and current systems. Seasonally, the OMIDAS showed better predictability in the warm seasons (spring and summer) than in the cold seasons (fall and winter), suggesting seasonal dependency in predictability of the Korea seas. In addition, the mid-range predictability for the Korea seas significantly varies depending on regions: the predictability was higher in the East Sea than in the Yellow Sea. The improvement in the seasonal predictability for the Korea seas by OMIDAS highlights the importance of a regional ocean modeling system for a medium-range marine prediction.

Variation of Physical Characteristic of Tidal Flat's Environment by Water Level Change (수위변동에 따른 갯벌의 물리적 환경특성의 변화)

  • Park, Jong-Hwa
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.2 no.3
    • /
    • pp.1-9
    • /
    • 1999
  • This paper described the results of the characteristics of the near-bottom flow and field analysis of the tidal flats sediment. It was the aim of this paper to grasp current flow of tidal flat's environment and influence factor for environmental change forecast of tidal flats. Field measurement of water velocity, water elevation, bed materials test, and temperature distribution of tidal flat were conducted. Thereafter, current flow, turbidity and temperature distribution of tidal flat sediment have been discussed. The field research results showed that the fluctuating velocity near the seabed before and after its appearance at low tide was strongly affected by the wind wave. The resuspension of the sea-bottom sediment took place with great intensity before and after the appearance of the seabed at low tide. Both the sea water level and the weather condition were a significant influential factors. Such as, temperature and turbidity just on the surface and the shallow layer of seabed sediments were varied largely with time and weather conditions, but that its deeper layers was almost constant. Temperature on the seabed sediments was strongly influenced by irradiance and water depth. The temperature variation of the tidal flat and the variation characteristics of the current flow and turbidity depend greatly on the inhabiting environment of the tidal flat benthic organism.

  • PDF

Effect of the Environmental Conditions on the Structure and Distribution of Pacific Saury in the Tsushima Warm Current Region

  • Gong, Yeong;Suh, Young-Sang
    • Journal of Environmental Science International
    • /
    • v.12 no.11
    • /
    • pp.1137-1144
    • /
    • 2003
  • To provide evidence that the changes in oceanic environmental conditions are useful indices for predicting stock structure and distribution of the Pacific saury (Cololabis saira), the body length compositions and catch per unit fishing effort were examined in relation to the sea surface temperature(SST) anomalies in the Tsushima Warm Current(TWC) region. The size of the fish became larger(smaller) than the average in the same size category during the season of higher SST(lower SST) as opposed to the normal SST. The year-to-year changes in body size caused by the changes in the environmental conditions led the stock to be homogeneous during the period of high stock level from the late 1950s to early 1970s and in the 1990s. The changes in body size manifested by higher(lower) occurrence rates of larger (smaller) sized groups in relation to temperature anomalies suggest that the changes in the environmental conditions affect the distribution and the structure of the stock in the TWC region. Therefore, if the SST anomaly derived from satellite data is large enough in the early spring months(Mar. or Apr.), it is possible to predict whether or not sea temperature will be favorable for large sized groups of saury at normal or slightly earlier time of commencement of the fishery in spring(Apr.∼June).

Spatiotemporal Fluctuation of Water Temperature in Cheonsu Bay, Yellow Sea (천수만 수온의 시공간적 변동)

  • Choo, Hyo-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.1
    • /
    • pp.90-100
    • /
    • 2021
  • In the north and northeast of Cheonsu Bay, short-term fluctuations of surface water temperature are large owing to shallow water depth, weak current, and freshwater runoff. However, in the south of the bay, water temperature fluctuations are small owing to the inflow of offshore water by tidal currents. The water temperature in the north of the bay is higher in spring and summer than in the south of the bay, but lower in autumn and winter. During spring season, the fluctuation in the northern surface water temperature is the highest. The temperature fluctuations owing to tides are in phase with the tide in autumn and winter, and in the reverse phase with the tide in spring and summer. The dominant periods of water temperature fluctuations are half a day, daily, 15 days, and 1 month owing to the tide and 7 to 10 days, which are estimated based on atmospheric factors. Half a day and daily water temperature fluctuations are also highly correlated with air temperature and wind fluctuations. The sea area where water temperature fluctuations are highly correlated is divided into the north and south of the bay. The fluctuation phase is faster in the north of the bay than in the south or in the center.