• Title/Summary/Keyword: Sea surface current

Search Result 535, Processing Time 0.025 seconds

On the Wintertime Wind-driven Circulation in the Yellow Sea and the East China Sea : Part I. Effect of Tide-induced Bottom Friction (황해.동중국해의 겨울철 취송 순환에 대하여: Part I. 조류에 의한 저면 마찰력의 영향)

  • Lee, Jong-Chan;Kim, Chang-Shik;Jung, Kyung-Tae;Jun, Ki-Cheon
    • Ocean and Polar Research
    • /
    • v.25 no.spc3
    • /
    • pp.361-371
    • /
    • 2003
  • The effect of bottom friction on the steady wind-driven circulation in the Yellow Sea and the East China Sea (YSECS) has been studied using a two-dimensional numerical model with and without tidal forcing. Upwind flow experiment in YSECS has also been carried out with a schematic time variation in the wind field. The surface water setup and circulation pattern due to steady wind forcing are found to be very sensitive to the bottom friction. When the effects of tidal currents are neglected, the overall current velocities are overestimated and eddies of various sizes appear, upwind flow is formed within the deep trough of the Yellow Sea, forming a part of the topographic gyre on the side of Korea. When tidal forcing is taken into account, the wind-induced surface elevations are smoothed out due to the strong tide-induced bottom friction, which is aligned almost normal to the wind stresses; weak upwind flow is farmed in the deep trough of the Yellow Sea, west and south of Jeju. Calculation with wind forcing only through a parameterized linear bottom friction produces almost same results from the calculation with $M_2$ tidal forcing and wind forcing using a quadratic bottom friction, supporting Hunter (1975)'s linearization of bottom friction which includes the effect of tidal current, can be applied to the simulation of wind-driven circulation in YSECS. The results show that steady wind forcing is not a dominant factor to the winter-time upwind flow in YSECS. Upwind flow experiment which considers the relaxation of pressure gradient (Huesh et al. 1986) shows that 1) a downwind flow is dominant over the whole YSECS when the northerly wind reaches a maximum speed; 2) a trend of upwind flow near the trough is found during relaxation when the wind abates; 3) a northward flow dominates over the YSECS after the wind stops. The results also show that the upwind flow in the trough of Yellow Sea is forced by a wind-induced longitudinal surface elevation gradient.

Internal Waves and Surface Mixing Observed by CTD and Echo Sounder in the mid-eastern Yellow Sea (황해 중동부해역에서 CTD와 음향탐지기로 관측한 내부파와 표층 혼합)

  • Lee, Sang-Ho;Choi, Byoung-Ju;Jeong, Woo Jin
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • Acoustic backscatter profiles were measured by Eco-sounder along an east-west section in the mid-eastern Yellow Sea and at an anchoring station in the low salinity region off the Keum River estuary in September 2012, with observing physical water property structure by CTD. Tidal front was established around the sand ridge developed in 50 m depth region. Internal waves measured by Eco-sounder during low tide period in the eastern side of the sand ridge were nonlinear depression waves with wave height of 15 m and mean wavelength of 500 m. These waves were interpreted into tidal internal waves that were produced by tidal current flowing over the sand ridge to the southeast. When weakly non-linear soliton model was applied, propagation speed and period of these internal depression wave were 50 m/s and 16~18 min. Red tides by Dinoflagelates Cochlodinium were observed in the sea surface where strong acoustic scattering layer was raised up to 7 m. Hourly CTD profiles taken at the anchoring station off the Keum River estuary showed the halocline depth change by tidal current and land-sea breeze. When tidal current flowed strongly to the northeast during flood period and land-breeze of 7 m/s blew to the west, the halocline was temporally raised up as much as 2 m and acoustic profile images showed a complex structure in the surface layer within 5-m depth: in tens of seconds the declined acoustic structure of strong and weak scattering signals alternatively appeared with entrainment and intrusion shape. These acoustic profile structures in the surface mixed layer were observed for the first time in the coastal sea of the mid-eastern Yellow Sea. The acoustic profile images and turbidity data suggest that relatively transparent low-layer water be intruded or entrained into the turbid upper-layer water by vertical shear between flood current and land breeze-induced surface current.

Transplantation of Koelreuteria paniculata by Sea Current (모감주나무의 해류에 의한 전파)

  • 이영노
    • Journal of Plant Biology
    • /
    • v.1 no.1
    • /
    • pp.11-20
    • /
    • 1958
  • I. Assumption: Mo-kam-ju, Koelreuteria paniculata is a woody plant mainly cistributed over Northern China. Its sporadic growth along the beaches of Korea and Japan is assumed to have been sowed by the seeds transported adrift on the current across the ocean. II. Use and Growth of the Plant: In China, this plant has been cultivated from early times mainly at temples, it seeds being used as rosaries, its flowers for yellow dyes and medicine for the eyes, and its leaves for black dyes. In Korea and Japan, these plants have been cultivated at temples and used as the material for rosaries. No natural growth of these plants was reported until 1919. III. Discoveries: In this domestic area, Dr. Chung Tae Hyun discovered the plant on the beach between Cho-Do and Chang-san-kot, Hwang-Hae Prov. in 1920. The reporter discovered them on the beach at Buk-Ni, Duk-jok-Do in 1948, at An-Hung in 1956 and on the beach at An-min-Do in 1957. In the Japan area, it was discovered for the first time twenty years ago, mainly along the coast line of the Japan Sea and some along the eastern coast line, at Subo, Yamaguchi Prefecture facing the Pacific Ocean. IV. Study and Experiment: A. Seed The seed coat is thick, non-permeable and floatable. A number of seeds were immersed in artificial sea water and fresh water separately. The seeds remained there for a hundred and forty-five (145) days from April 6, 1957 to August 29, 57. Thirty one seeds out of the fifty immersed in salt water and twenty seeds out of the fifty immersed in fresh water remained on the surface of the water, proving them to be non-permeable to both sea and fresh water. Of course, these had retained their germinating capabilities. Five (5) seeds out of twenty from the fresh water and six (6) out of thirty-one from the sea water were successfully germinated after a hole had been drilled in the seed coat and they had been planted. Thus their floating capability, non-permeability and germinating capability after a possible 145 day trip on the flowing currents has been proved satisfactory according to the assumption made above. B. Current As shown in the Data 2 and 3, the sea current initiated in the Pohai Sea flows westward down along the coast line of Korea reaching the southern part during the autumn and winter seasons. This fact also is in favor of the reporter's assumption. V. Discussion and Conclusion: The reporter concludes that, as discussed above, Koelreuteria paniculata which originates in Northern China is transported adrift on the flowing sea current to our western coast line, and also the coast lines of Shantung and Kuangtung of China and it is germinated on the sandy beaches forming new plants. Thus, the seeds drifted down on the southern beach of Korea and have been transported to the Japanese coast, adrift on the Tae-Ma current. Upon fruition, the seeds of the plants which settle on the coasts of western Korea and Japan will migrate to new places. It can be, however, assumed that while the thickness and nonpermeability of the coat enables the long travel in the water, this also can compose a difficulty in germination, consequently in developing a new distribution of this species.

  • PDF

A Study on Sea Water and Ocean Current in the Sea Adjacent to Korea Peninsula - Expansion of Coastal Waters and Its Effect on Temperature Variations in The South Sea of Korea - (한반도 근해의 해류와 해수 특성 -남해연안수 확장과 수온변화-)

  • NA Jung-Yul;HAN Sang-Kyu;CHO Kyu-Dae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.4
    • /
    • pp.267-279
    • /
    • 1990
  • The temporal and spatial distribution of the coastal cold waters which was formed due to winter colling in the South Sea of Korea was analyzed by IR images from satellite and in situ data from shipboard observations. The coastal waters are known to be consisted of the Yellow Sea Coastal Waters(YSCW) and the South Korean Coastal Waters(SKCW). The former is driven around the Chuja-do and drifted into the Cheju Strait by residual currents, while the latter expands toward offsea by southward wind forcing. The expansion patterns of the SKCW were observed as sinking expansion or drifting expansion such that both were strongly dependent on the surface heat flux conditions. Under the condition of positive heat flux(warmer sea surface) or when the sea surface heat is lost to the atmosphere, the surface water started sinking and eventually expanded toward the open sea causing the cooling of the water column. For the negative heat flux the surface water was just drifted horizontally and expanded seaward and in this case only the surface layer of water was cooled.

  • PDF

The Movements Of The Waters Off The South Coast Of Korea

  • Lim, Du Byung
    • 한국해양학회지
    • /
    • v.11 no.2
    • /
    • pp.77-88
    • /
    • 1976
  • The water movements in the south sea of Korea are deduced from the distributions of water properties. In summer the flow path of the Tsushima Current is deflected off from the Korean coast; between the coast and the current there exist eddies. Cyclonic eddies are particularly dominant in the southeastern area of Sorido Is. In winter, the sunken coastal water flows out along the bottom toward the southeast, and compensation is made at the surface by the coastward intrusion of off-shore waters. The so-called coastal counter- current of the area seems to be a cyclonic eddy which prevails in summer and autumn.

  • PDF

Temporal and Spatial Characteristics of Sea Surface Winds over the Adjacent Seas of Korean Peninsular - Spectral Analysis.

  • Lee, Heung-Jae;Na, Jung-Yul;Han, Sang-Kyu
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1995.10a
    • /
    • pp.20-25
    • /
    • 1995
  • Surface wind field over an ocean plays a very important role not only to generate wind-driven current, but also to control heat exchange between ocean and atmosphere. However, the surface wind-field used for the ocean circulation and heat exchange is usually estimated by indirect methods because of lack of observed wind data and incomplete spatial coverage. (omitted)

  • PDF

Patterns of Zooplankton Distribution as Related to Water Masses in the Korea Strait during Winter and Summer (여름철 및 겨울철 수괴에 따른 대한해협의 동물플랑크톤 분포 양상)

  • Jang, Min-Chul;Baek, Seung-Ho;Jang, Pung-Guk;Lee, Woo-Jin;Shin, Kyoung-Soon
    • Ocean and Polar Research
    • /
    • v.34 no.1
    • /
    • pp.37-51
    • /
    • 2012
  • We investigated the distribution and species composition of zooplankton in relation to hydrographical characteristics in the Korea Strait during the winter (February) and summer (July) of 2009. Satellite images of sea surface temperatures and in situ CTD data showed that the southeastern water zone (St3-5) off Jeju Island was strongly influenced by the Tsushima Current during both the winter and summer, whereas the Changjiang Diluted Water, characterized as water with relatively low salinity, was evident in the coastal waters of Jeju Island during the summer. During winter, zooplankton abundance was significantly higher than in the summer, with dominance by copepods, ostracods, siphonophorans, appendicularians, and nauplii. In both seasons, copepods represented >70% of the total zooplankton population. Calanus sinicus, a large calanoid copepod, was dominant in near the coast, and that may be associated with the intrusion of low salinity water (i.e., the Changjiang Diluted Water) along the coast. The abundance of P. parvus s.l. and A. omorii, known as neritic copepods, was mainly associated with the Korea Southern Coastal Water. Foraminiferans, Ostracods, O. plumifera, and P. aculeatus were concentrated in the southeastern water off Jeju Island during both seasons; showing their association with the Tsushima Current, which is characterized warm, high salinity water. Our results suggest that the distribution, abundance, and species composition of zooplankton are highly influenced by different water masses in the Korea Strait.

On the Marine Environment and Distribution of Phytoplankton Community in the Northern East China Sea in Early Summer 2004 (이른 여름 동중국해 북부해역의 해양환경과 식물플랑크톤 군집의 분포특성)

  • Yoon, Yang-Ho;Park, Jong-Sick;Soh, Ho-Young;Hwang, Doo-Jin
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.2
    • /
    • pp.100-110
    • /
    • 2005
  • We carried oui a study on the marine environment and distribution of phytoplankton community, such as chlorophyll a, species composition, dominant species and standing crops in the Northern East China Sea during early summer of 2004. According to the analysis of a T-S diagram, three characteristics of water masses were identified. We classified them into the coastal water mass, the cold water mass and the oceanic water mass. The first was characterized by the low temperature and the low salinity originated from China territory, the secondary was characterized by the low temperature, the low salinity and the high density originated from bottom cold water of Yellow Sea, and the third was done by the high temperature and salinity originated from Tsushima warm current. The internal discontinuous layer among them was farmed at the intermediate depth (about $5{\sim}30m$ layer). And the thermal front by upwelling region between the cold water mass and Tsushima warm current appeared in the central parts of the South Sea of Korea. The Phytoplankton community in the surface and stratified layers was a total of 44 species belonging to 26 genera. Dominant species were Prorocentrum triestinum, Scrippsiella trochoidea, Skeletonema costatum & Leptocylindrus mediterraneus. Standing crops of phytoplankton in the surface layer fluctuated between $0.3{\times}10^3$ cells/L and $10.8{\times}10^3$ cells/L. Diatoms appeared mainly in the Tsushima warm current regions, and flagellates occurred in the frontal zone and the low salinity regions where was the transfer areas of Chinese continental coastal waters. Chlorophyll a concentration by controlled phytoflagellate ratio in the South Sea of Korea was high values in the frontal zone and sub-surface layer. It was high concentration in the upwelling and coastal waters regions, but low concentration in the Tsushima warm current regions. The Chl-a maximum layers appeared in the thermochline depth or sub-surface layer lower than thermocline. The phytoplankton production in the South Sea of Korea was controlled by the expanded coastal waters of Chinese Continent which include a high concentrations of nutrients.

  • PDF

Schematic Maps of Ocean Currents in the Yellow Sea and the East China Sea for Science Textbooks Based on Scientific Knowledge from Oceanic Measurements (관측 기반 과학적 지식에 근거한 과학교과서 황해 및 동중국해 해류모식도)

  • PARK, KYUNG-AE;PARK, JI-EUN;CHOI, BYOUNG-JU;LEE, SANG-HO;SHIN, HONG-RYEOL;LEE, SANG-RYONG;BYUN, DO-SEONG;KANG, BOONSOON;LEE, EUNIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.4
    • /
    • pp.151-171
    • /
    • 2017
  • Most of oceanic current maps in the secondary school science and earth science textbooks have been made on the base of extensive in-situ measurements conducted by Japanese oceanographers during 1930s. According to up-to-date scientific knowledge on the currents in the Yellow Sea and the East China Sea (YES), such maps have significant errors and are likely to cause misconceptions to students, thus new schematic map of ocean currents is needed. The currents in the YES change seasonally due to relatively shallow water depths, complex terrain, winds, and tides. These factors make it difficult to construct a unified ocean current map of the YES. Sixteen major items, such as the flow of the Kuroshio Current into the East China Sea and its northward path, the origin of the Tsushima Warm Current and its path into the Korea Strait, the path of Taiwan Warm Current, the Jeju Warm Current, the runoff pattern of the Yangtze River flow, the routes of the northward Yellow Sea Warm Current, the Chinese Coastal Current, and the West Korea Coastal Current off the west coast of the Korean Peninsula, were selected to produce the schematic current map. Review of previous scientific researches, in-depth discussions through academic conferences, expert discussions, and consultations for three years since 2014 enabled us to produce the final ocean current maps for the YES after many revisions. Considering the complexity of the ocean currents, we made seven ocean current maps: two representative current patterns in summer and winter, seasonal current maps for upper layer and lower layer in summer and winter, and one representative surface current map. It is expected that the representative maps of the YES, connected to the current maps of the East Sea and the Northwest Pacific Ocean, would be widely utilized for diverse purposes in the secondary-school textbooks as well as high-level educational purposes and even for scientific scholarly experts.

Thermal Structure of the East China Sea Upper Layer Observed by a Satellite Tracked Drifter Experiment (위성추적부이를 이용한 동중국해 상층 수온구조 관측)

  • Lee, Seok;Lie, Heung-Jae;Cho, Cheol-Ho;Song, Kyu-Min;Lee, Jae-Hak
    • Ocean and Polar Research
    • /
    • v.30 no.3
    • /
    • pp.361-372
    • /
    • 2008
  • A satellite tracked drifter experiment was conducted to observe thermal structure and surface circulation in the northeastern East China Sea. For this experiment, four ADOS buoys, assembled with surface float and thermister chain, were deployed on August 2007 in southern Jeju-do, where the Kuroshio Branch Current is separated from the main stream. Thermal structure in the upper layer of the northeastern East China Sea was successfully observed during the following $1{\sim}3$ months. Strong thermo-haline front in a northeast-southwest direction was observed. In the frontal zone, warm and saline Kuroshio origin water intermixes with fresher coastal water and flows toward the Korean Strait. Typhoon Nari, which passed over the East China Sea 20 days after commencement of study, caused distinct signals in the thermal structure and trajectory of buoys. During the typhoon, surface temperature abruptly dropped to about $4^{\circ}C$, while the thermocline formed at $30{\sim}50$ m depth vanished due to strong vertical mixing. Internal inertial oscillation occurred several days after the typhoon. The fortuitous occurrence of typhoon Nari showed that ADOS buoys can provide useful and accurate air-sea interaction data during typhoons.