• Title/Summary/Keyword: Sea storms

Search Result 44, Processing Time 0.029 seconds

THE USE OF QUICKS CAT WIND TO ESTIMATE THE VERTICAL VELOCITY IN TYPHOON AND SNOWSTORM

  • Heol Ki-young;Ha Kyung-Ja;Lee Dong-Kyu;Jeong Jin-Yong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.54-57
    • /
    • 2005
  • This study examines moisture supplement from the warm ocean in snowfalls of two cases and heavy rainfall of Typhoon case. The QuickSCAT wind is used to evaluate the convergence of moisture fluxes in the storms from the sea in estimation of the amount of heavy snowstorm and rainfall. The results show that enough water vapor transport from ocean to atmosphere induced the severe storms, because strong QuickSCAT -derived vertical velocity nearly concurred with heavy snowfall and rainfall. In the present study, we attempted to show that QuickSCAT wind can be used to forecast the severe weather events, such as heavy snowfall and rainfalls.

  • PDF

The Introduction to MODIS Ground Pre-processing System and Application Fields (MODIS 처리시스템 및 활용분야 소개)

  • 서두천;임효숙;전정남;김재관
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2003.04a
    • /
    • pp.271-276
    • /
    • 2003
  • The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) of Terra and Aqua satellites, launched in December 1999 and May 2002, has been directly received by Korea Aerospace Research Institute (KARI) ground station facility from July 2002. MODIS scans a swath width of 2330 km that is sufficiently wide to cover Korean peninsular, Yellow and East Sea at once. The MODIS has 36 spectral bands between 0.415 $\mu\textrm{m}$ and 14.235 $\mu\textrm{m}$, i.e., through the visible into the thermal infrared. MODIS has been observed active fires, floods, smoke transport, dust storms, severe storms since February of 2000. The satellite imagery obtained through the MODIS will be utilized for many application such as national territorial management, agriculture, natural environment, atmosphere and ocean, etc. In this study is to introduce various application field of MODIS imagery and data processing system.

  • PDF

An Experimental Study on Fatigue Life Evaluation of Welded Joints under Storm Loading (스톰 하중을 받는 용접 구조물의 피로 수명 평가에 대한 실험 연구)

  • Yoo, Chang-Hyuk;Kim, Kyung-Su;Suh, Yong-Suk;Shim, Yong-Lae;Ha, Yeong-Su;You, Won-Hyo;Choi, Hyun-Jun
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.49 no.1
    • /
    • pp.99-108
    • /
    • 2012
  • In this paper, fatigue tests are conducted for the specimens with longitudinal and transverse attachment under variable amplitude axial loading based on storm model. Considered loadings include repeated single storm, 6 or 8 storms randomly, and storms including calm sea condition while the mean stress and the maximum stress of loadings are changed. The effect of three variables are investigated; root mean square(RMS) value of stress amplitude, mean stress shift and maximum stress, which can characterize storm loading on fatigue life. In addition, experiments including calm sea loading are also carried out to investigate the effect of calm sea state. Test results are evaluated and compared with DNV-CN2005 and Matsuoka's method for the estimation of crack initiation and propagation life. To verify the validity of the criteria, the measured crack initiation lifes are compared with the specific crack length 15mm, which are calculated with beach marks.

The Hydro-Environmental Characteristics of Port Facilities around the Sea of Cheju Island (제주해역 항만시설물의 수리환경적 특성에 관한 연구)

  • 정태욱;김종인;류청로
    • Journal of Ocean Engineering and Technology
    • /
    • v.14 no.3
    • /
    • pp.1-10
    • /
    • 2000
  • In order to effective manage the construction, disaster prevention plan and the harbor tranquility control, meteorological and sea-state characteristics around Cheju Island have been analyzed. Using results and damage examples of the port facilities under severe sea conditions, a reasonable construction control plan considering the regional characteristics of the sea-state and winds was proposed. That is, in northern part of Cheju Island, the construction work is affected mainly by the winter storms, while the typhoon mainly affects the southern part port facilities during summer to Autumn. Considering their typical characteristics, it is strongly suggested that the main construction work should be carried out during April to July in the northern part, and it should be made during October to next July in the southern part of the island. A permeable TTP mounded breakwater was constructed to protect severe waves as a temporal structure under the long-term development plan in Sogipo port. The transmission characteristics of the structure was discussed using the experimental results. The results show that the transmission coefficient $K_{t}$ is over 20% of incident waves, which cause many problems in the cargo handling in relation to harbor tranquility. In conclusion, this kind of permeable structure can be used only as a temporal structure for the disaster prevention under the construction process. It causes many problems in harbor tranquility if it is used as a permanent harbor structures.s.

  • PDF

Numerical Simulation of Surge - Wave Combined Inundation at Mokpo North Harbor (목포 북항에서 풍파에 의한 해수범람의 수치 모의)

  • Lee, Jung Lyul;Kang, Ju Whan;Yoon, Jong Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3B
    • /
    • pp.307-313
    • /
    • 2008
  • Tidal amplification by construction of sea-dike and sea-walls had been detected not only near Mokpo North Harbor but also at Chungkye Bay which is connected with Mokpo North Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of runup height and inundation area during storms. In this study, a simulation process is composed of wind wave generation model for large area and wave inundation model for small coastal zone. The nonlinear version of mild-slope equation is modified for simulating wind-driven surge and wave inundation at a small area. The models are applied to Chungkye Bay, and possible inundation features at Mokpo North Harbor are investigated.

Development of MODIS Data Application System

  • Lim, Hyo-Suk;Lee, Seon-Gu;Seo, Doo-Cheon;Lee, Dong-Han;Kim, Mi-Na;Kim, Yong-Seung
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.347-351
    • /
    • 2002
  • The Moderate Resolution Imaging Spectroradiometer (MODIS) on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, is directly received by Korea Aerospace Research Institute (KARI) ground station facility. BURI engineers develop a system to receive direct broadcast downlink from MODIS to provide near-realtime, remotely-sensed, spaceborne data to the user community in Korea. MODIS scans a swath width of 2330 km that is sufficiently wide to cover Korean peninsular, Yellow and East Sea at once. The MODIS has 36 spectral bands between 0.415 fm and 14.235 $\mu$m, i.e. through the visible into the thermal infrared. MODIS has been observed active fires, floods, smoke transport, dust storms, severe storms since February of 2000. The KARI is preparing for distribution of direct broadcasted MODIS data to users in Korea. The MODIS database system will be designed and developed by KARI engineer for data service from year of 2003. MODIS data user group will be organized from $\.{O}$ctober to December 2002.

  • PDF

Wave Inundation at Mokpo Harbor (목포항에서의 풍파로 인한 범람)

  • Lee, Jung-Lyul;Kang, Juo-Hwan;Moon, Seung-Rok;Lim, Heung-Soo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.574-578
    • /
    • 2006
  • Tidal amplification by construction of the sea-dike and sea-walls had been detected not only near Mokpo Harbor but also at Chungkye Bay which is connected with Mokpo Harbor by a narrow channel. This brings about increase of tidal flat area and in particular increase of surge-wave combined runup during storms. The purpose of this study is to examine an efficient operational model that can be used by civil defense agencies for real-time prediction and fast warnings on wind waves and storm surges. Instead of using commercialized wave models such as WAM, SWAN, the wind waves are simulated by using a new concept of wavelength modulation to enhance broader application of the hyperbolic wave model of the mild-slope equation type. Furthermore, The predicting system is composed of easy and economical tools for inputting depth data of complex bathymetry and enormous tidal flats such as Mokpo coastal zone. The method is applied to Chungkye Bay, and possible inundation features at Mokpo Harbor are analyzed.

  • PDF

Modeling the long-term vegetation dynamics of a backbarrier salt marsh in the Danish Wadden Sea

  • Daehyun Kim
    • Journal of Ecology and Environment
    • /
    • v.47 no.2
    • /
    • pp.49-62
    • /
    • 2023
  • Background: Over the past three decades, gradual eustatic sea-level rise has been considered a primary exogenous factor in the increased frequency of flooding and biological changes in several salt marshes. Under this paradigm, the potential importance of short-term events, such as ocean storminess, in coastal hydrology and ecology is underrepresented in the literature. In this study, a simulation was developed to evaluate the influence of wind waves driven by atmospheric oscillations on sedimentary and vegetation dynamics at the Skallingen salt marsh in southwestern Denmark. The model was built based on long-term data of mean sea level, sediment accretion, and plant species composition collected at the Skallingen salt marsh from 1933-2006. In the model, the submergence frequency (number yr-1) was estimated as a combined function of wind-driven high water level (HWL) events (> 80 cm Danish Ordnance Datum) affected by the North Atlantic Oscillation (NAO) and changes in surface elevation (cm yr-1). Vegetation dynamics were represented as transitions between successional stages controlled by flooding effects. Two types of simulations were performed: (1) baseline modeling, which assumed no effect of wind-driven sea-level change, and (2) experimental modeling, which considered both normal tidal activity and wind-driven sea-level change. Results: Experimental modeling successfully represented the patterns of vegetation change observed in the field. It realistically simulated a retarded or retrogressive successional state dominated by early- to mid-successional species, despite a continuous increase in surface elevation at Skallingen. This situation is believed to be caused by an increase in extreme HWL events that cannot occur without meteorological ocean storms. In contrast, baseline modeling showed progressive succession towards the predominance of late-successional species, which was not the then-current state in the marsh. Conclusions: These findings support the hypothesis that variations in the NAO index toward its positive phase have increased storminess and wind tides on the North Sea surface (especially since the 1980s). This led to an increased frequency and duration of submergence and delayed ecological succession. Researchers should therefore employ a multitemporal perspective, recognizing the importance of short-term sea-level changes nested within long-term gradual trends.

Analysis of the Relationship of Water Vapor with Precipitation for the Winter ESSAY (Experiment on Snow Storms At Yeongdong) Period (겨울철 ESSAY (Experiment on Snow Storms At Yeongdong) 기간 동안 수증기량과 강수량의 연관성 분석)

  • Ko, A-Reum;Kim, Byung-Gon;Eun, Seung-Hee;Park, Young-San;Choi, Byoung-Choel
    • Atmosphere
    • /
    • v.26 no.1
    • /
    • pp.19-33
    • /
    • 2016
  • Water vapor in the atmosphere is an important element that generates various meteorological phenomena and modifies a hydrological cycle. In general, the Yeongdong region has a lot of snow compared to the other regions in winter due to the complex topography and an adjacent East Sea. However, the phase change from water vapor to ice cloud and further snowfall has little been examined in detail. Therefore, in this study, we investigated phase change of liquid water in terms of a quantitative budget as well as time lag of water vapor conversion to snowfall in the ESSAY (Experiment on Snow Storms At Yeongdong) campaign that had been carried out from 2012 to 2015. First, we classified 3 distinctive synoptic patterns such as Low Crossing, Low Passing, and Stagnation. In general, the amount of water vapor of Low Crossing is highest, and Low Passing, Stagnation in order. The snowfall intensity of Stagnation is highest, whereas that of Low Crossing is the lowest, when a sharp increase in water vapor and accordingly a following increase in precipitation are shown with the remarkable time lag. Interestingly, the conversion rate of water vapor to snowfall seems to be higher (about 10%) in case of the Stagnation type in comparison with the other types at Bukgangneung, which appears to be attributable to significant cooling caused by cold surge in the lower atmosphere. Although the snowfall is generally preceded by an increase in water vapor, its amount converted into the snowfall is also controlled by the atmosphere condition such as temperature, super-saturation, etc. These results would be a fundamental resource for an improvement of snowfall forecast in the Yeongdong region and the successful experiment of weather modification in the near future.

Characteristics of tropical cyclones over the western North Pacific in 2007 (2007년 태풍 특징)

  • Cha, Eun-Jeong;Park, Yun-Ho;Kwon, H. Joe
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.183-197
    • /
    • 2008
  • The purpose of this study is to summarize tropical cyclone activity in 2007. 24 tropical cyclones of tropical storm (TS) intensity or higher formed in the western North Pacific and the South China Sea in 2007. The total number is less than the thirty-year (1971~2000) average frequency of 26.7. Out of twenty four tropical cyclones, 14 TCs reached typhoon (TY) intensity, while the rest 10 only reached severe tropical storm (STS) and tropical storm (TS) intensity - four STS and six TS storms. The tropical cyclone season in 2007 began in April with the formation of KONG-REY (0701). From April to May, two TCs formed in the western North Pacific in response to enhanced convective activity there. From June to July, convective activity turned inactive over the sea around the Philippines and in the South China Sea, and the subtropical high was weak over the south of Japan. MAN-YI (0704) and USAGI (0705) moved northwestward and hit Japan, bringing serious damage to the country. After August, convective activity became enhanced over the sea east of the Philippines, and the subtropical high turned strong over the sea south of Japan. Many TCs, which formed over the sea east of the Philippines and in the South China Sea, moved westward and hit China and Vietnam. PABUK (0706), WUTIP (0707), SEPAT (0708), WIPHA (0712), LEKIMA (0714) and KROSA (0715) brought serious damage to some countries including China, the Philippines and Vietnam. On the other hand, FITOW (0709) and NARI (0711) moved northward, bringing serious damage to Japan and Korea. After HAIYAN (0716), all four TCs except FAXAI (0720) formed over the sea east of $140^{\circ}E$. Three typhoons among them affected Republic of Korea, MAN-YI (0704), USAGI (0705) and NARI (0711). Particularly, NARI (0711) moved northward and made landfall at Goheng Peninsula ($34.5^{\circ}N$, $127.4^{\circ}E$) in 1815 KST 16 September. Due to $11^{th}$ typhoon NARI, strong wind and record-breaking rainfall amount was observed in Jeju Island. It was reported that the daily precipitation was 420.0 mm at Jeju city, Jeju Island on 16 September the highest daily rainfall since Jeju began keeping records in 1927. This typhoon hit the southern part of the Korean peninsula and Jeju Island. 18 people lost their lives, 14,170 people were evacuated and US$ 1.6 billion property damage was occurred.