• 제목/요약/키워드: Sea ice thickness

검색결과 35건 처리시간 0.025초

전구 해빙모델(CICE)을 이용한 해빙 농도와 해빙 두께 민감도 비교 (Sensitivity Study of Simulated Sea-Ice Concentration and Thickness Using a Global Sea-Ice Model (CICE))

  • 이수봉;안중배
    • 대기
    • /
    • 제24권4호
    • /
    • pp.555-563
    • /
    • 2014
  • The impacts of dynamic and thermodynamic schemes used in the Community Ice CodE (CICE), the Los Alamos sea ice model, on sea ice concentration, extent and thickness over the Arctic and Antarctic regions are evaluated. Using the six dynamic and thermodynamic schemes such as sea ice strength scheme, conductivity scheme, albedo type, advection scheme, shortwave radiation method, and sea ice thickness distribution approximation, the sensitivity experiments are conducted. It is compared with a control experiment, which is based on the fixed atmospheric and oceanic forcing. For sea ice concentration and extent, it is found that there are remarkable differences between each sensitivity experiment and the control run over the Arctic and Antarctic especially in summer. In contrast, there are little seasonal variations between the experiments for sea ice thickness. In summer, the change of the albedo type has the biggest influence on the Arctic sea ice concentration, and the Antarctic sea ice concentration has a greater sensitivity to not only the albedo type but also advection scheme. The Arctic sea ice thickness is significantly affected by the albedo type and shortwave radiation method, while the Antarctic sea ice thickness is more sensitive to sea ice strength scheme and advection scheme.

전자기 유도 장비를 이용한 북극해 해빙의 두께측정 (Measurement of Sea Ice Thickness in the Arctic Ocean Using an Electromagnetic Induction Instrument)

  • 정성엽;이춘주
    • 대한조선학회논문집
    • /
    • 제49권2호
    • /
    • pp.189-195
    • /
    • 2012
  • The ice trials of the first Korean icebreaking research vessel "ARAON" were performed at the Arctic Ocean in July-August 2010. The sea ice concentrations of Arctic Ocean were 4/10 to 10/10 and the range of sea ice thickness was roughly 1.0 to 3.5m. In this research, sea ice thickness characteristics at the old ice floes were determined from results of drill hole and apparent conductivity measurements. Especially we measured apparent conductivity using an electromagnetic induction instrument (EM31-MK2) and estimated the sea ice thickness through the empirical equation from Cold Regions Research & Engineering Laboratory, CRREL. The results of estimated sea ice thickness were compared to drill hole measurement results and then, we suggest the new empirical equation to estimate sea ice thickness of single layer type sea ice during the summer season of Arctic Ocean by curve fitting approach to these data.

Study on Thin Sea Ice Thickness using Passive Microwave Brightness Temperature

  • Naoki, Kazuhiro;Ukita, Jinro;Nishio, Fumihiko
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
    • /
    • pp.1015-1018
    • /
    • 2006
  • The use of passive microwave data for estimating sea-ice thickness is limited by strong dependence of emissivity on near-surface brine. However, this particular characteristic becomes a basis for an algorithm to estimate thickness of thin sea-ice if a thickness-salinity-emissivity relationship is established. This study aims at developing an algorithm to estimate sea ice thickness on the basis of this relationship. In order to establish a thickness-salinity-emissivity relationship, we have conducted multi-platform synchronous observations in the Sea of Okhotsk. We note a positive relationship between thickness and brightness temperature. From observations, we also establish an empirical relationship between salinity and emissivity, thus between thickness and brightness temperature. The derived relationship is qualitatively similar to the one based on Hoekstra and Cappillino's formulation. Our results suggest that for thin sea-ice in the winter period there is potential to develop an algorithm to estimate sea-ice thickness.

  • PDF

빙해역의 빙상환경 계측에 관한 연구 (2010년 여름 Svalbard와 Chukchi Sea 근해) (A study on the measurement of ice in the Arctic region (At Svalbard and Chukchi Sea on 2010 summer))

  • 김현수
    • 한국기계기술학회지
    • /
    • 제13권1호
    • /
    • pp.23-29
    • /
    • 2011
  • The measurement of ice properties such as thickness, strength are important to know the performance of the ice breaking vessel. The measuring equipment of ice properties and methods are summarized in this paper. The actual measured data are also described. The strength of ice at Svalbard area on April 2010 is much stronger than the Chukchi Sea on August 2010. The mean strength of Svalbard is about 500 kPa and one of Chukchi Sea is 250 kPa. The first sea trial in Arctic sea using Araon was carried out in the Chukchi Sea. The power and speed was also measured to check the ship performance in ice. The speed was measured from GPS(Global Positioning System) and engine power was recorded from DPS(Dynamic Positioning system) of Araon. The design target of Araon in level ice is 3 knots in 1m thickness and 630 kPa flexible strength but mean speed in Chuckchi sea is 3.98 knots when 6.6 MW engine power, 2.4m ice thickness and 250 kPa strength. This results comes from the difference of ice types and the weak flexible strength of ice but it will be a good information to know the performance of Araon in similar ice condition.

추코트와 보퍼트 해에서 계측된 해빙 두께와 건현과의 관계 (Relation Between Measured Sea Ice Thickness and Freeboard on Chukchi and Beaufort Seas)

  • 정성엽;최경식;조성락;강국진;이춘주
    • 한국해양공학회지
    • /
    • 제28권6호
    • /
    • pp.527-532
    • /
    • 2014
  • The thickness of Arctic sea ice is a particularly significant factor in Arctic shipping and other ice-related research areas such as scientific sea ice investigations and Arctic engineering. In this study, the relation between the measured sea ice thickness and freeboard on the Chukchi and Beaufort Seas during the 2010 and 2011 Arctic cruise of the icebreaking research vessel "Araon" were considered. An assumption of hydrostatic equilibrium was used to estimate the ice thickness as a function of the freeboard. Then, to examine the degree of error, a sensitivity analysis of the thickness estimation of the sea ice was conducted. The error in the density and depth of the snow and the error in the density of the seawater were subordinate parameters, but the density of the ice and the freeboard were the primary parameters in the error calculation. The presented relation formula showed fairly close agreement between the calculated and measured results at a freeboard of >0.24 m.

쇄빙연구선 "Araon"호를 활용한 빙해역 속력 시운전에 관한 연구 (A Study on the Speed Sea Trial on the Ice Field for Ice Breaking Research Vessel "Araon")

  • 김현수;이춘주;정성엽;최경식
    • 대한조선학회논문집
    • /
    • 제48권5호
    • /
    • pp.421-425
    • /
    • 2011
  • To know the speed performance of "ARAON" in Arctic ice field, the measurement of ice properties which is ice thickness & strength, snow depth and free board were performed on July 2010. The measuring method of nautical signals such as heading angle, power of engine, wind & current information etc. was described in this paper. The speed sea trials in ice were performed on the four different positions with different ice properties and engine powers because the uniform level ice is not detected in the Chukchi Sea. The test field was partially constrained ice floe with hummocks and it was superposed with small broken ice pieces each other. All of the measured ice properties were compared and evaluated according to the results of sea trial. The relations between speed, ice thickness, strength and power were summarized. Consequently according to the sea trial results, the speed of ARAON is 2.78knots at the 2.49m ice thickness with 6.55MW engine power.

빙해역 시운전 해석을 위한 환경조건 보정 방법 및 검증 (Correction Methods and Validation for Environmental Conditions in the Ice Field Trials)

  • 김현수
    • 대한조선학회논문집
    • /
    • 제56권2호
    • /
    • pp.117-127
    • /
    • 2019
  • Vessel's ice speed performances will be verified in ice sea trial but environmental conditions of ice fields are changeable according to the weather condition of ice trial area. Speed performance has to correct in the no wind, wave and current etc. after sea trial. Especially finding ice fields which is exact the same as owner's ice thickness and strength requirements is not easy. Therefore speed correction according to environment condition has to be done after sea trial measurements. Correction methods for ice thickness, ice strength, wave, wind and ship draft, trim, ice drift etc. are checked in ice sea trial based on literature review such as ISO standard, ITTC recommendation, journal papers and proceedings of conferences. Possibility of application for current and ice drift correction in ice field are discussed and measuring schemes and procedures of correction methods are described in this paper. All of correction schemes are calculated for 'Araon' which is ice breaking research vessel with Arctic and Antarctic ice field test results. Analyzed results shows that Araon is satisfied with her official ice speed performance of 3 knots with 10MW power at 1m ice thickness, 570kPa ice flexural strength.

여름철 Chukchi Borderland 부근 해빙 재료특성 계측 (A Measurement of Sea Ice Properties at Chukchi Borderland During the Summer)

  • 정성엽;최걸기
    • 대한조선학회논문집
    • /
    • 제49권1호
    • /
    • pp.45-51
    • /
    • 2012
  • Sea ice properties have been considered a key indicator in the structural design criteria of icebreaking vessels and arctic offshore platforms to estimate design ice load and resistance for their safety management in Arctic Ocean. A measurement study of sea ice properties was conducted during July to August of 2011 with the Korean icebreaking research vessel "Araon" around Chukchi Borderland. The sea ice concentration appears to be rapidly decreasing during this cruise. Ice condition seems to be thick second-year ice and multi-year ice and then, a lot of melt ponds were observed in the surface of ice floe. Calculated flexural strength of sea ice was about 250~550kPa, ice thickness was roughly 1.3~3.0m. In this research we performed field experiment to measure ice temperature along the depth, thickness, density, salinity, brine volume ratio and crystal structure. Apparent conductivities derived with the electromagnetic induction instrument were compared to drill hole measurement results and accuracy of sea ice thickness estimation formula was discussed.

쇄빙연구선 ARAON호를 이용한 북극해 해빙의 재료특성 (1) - 해빙의 두께, 온도, 염도, 밀도 계측 - (Material Properties of Arctic Sea Ice during 2010 Arctic Voyage of Icebreaking Research Vessel ARAON: Part 1 - Sea Ice Thickness, Temperature, Salinity, and Density -)

  • 박영진;김대환;최경식
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.55-61
    • /
    • 2011
  • A field trial in an ice-covered sea is one of the most important tasks in the design of icebreaking ships and offshore structures. To correctly estimate the ice load and ice resistance of a ship's hull, it is essential to understand the material properties of sea ice during ice field trials and to use the proper experimental procedure for gathering effective ice data. The first Korean-made icebreaking research vessel, "ARAON," had her second sea ice trial in the Arctic Ocean during the summer season of 2010. This paper describes the test procedures used to obtain proper sea ice data, which provides the basic information for the ship's performance in an ice-covered sea and is used to estimate the correct ice load and ice resistance of the IBRV ARAON. The data gathered from the sea ice in the Chukchi Sea and Beaufort Sea during the Arctic voyage of the ARAON includes the temperature, density, and salinity of the sea ice, which was believed to be from two-year old ice floes. This paper analyses the gathered sea ice data in comparison with data from the first voyage of the ARAON during her Antarctic Sea ice trial.

큰 빙판에서 아라온 호 쇄빙 속도 성능 해석 (Speed Trial Analysis of Korean Ice Breaking Research Vessel 'Araon' on the Big Floes)

  • 김현수;이춘주;최경식
    • 대한조선학회논문집
    • /
    • 제49권6호
    • /
    • pp.478-483
    • /
    • 2012
  • The speed performances of ice sea trial on the Arctic(2010 & 2011) area were shown different results depend on the ice floe size. Penetration phenomena of level ice was not happened on medium ice floe and tore up by the impact force because the mass of medium ice floe is similar to the mass of Araon which is Korean ice breaking research vessel and did not shut up by the ice ridge or iceberg. The sea trial on the Amundsen sea was performed at the big floe which is classified by WMO(World Meteorological Organization). Three measurements of ice properties and five results of speed trial were obtained with different ice thicknesses and engine powers. To evaluate speed of level ice trial and model test results at the same ice thickness and engine power, the correction method of HSVA(Hamburg Ship Model Basin) was used. The thickness, snow effect, flexural strength and friction coefficient were corrected to compare the speed of sea trial. The analyzed speed at 1.03m thickness of big floe was 5.85 knots at 10MW power and it's 6.10 knots at 1.0m ice thickness and the same power. It's bigger than the results of level ice because big floe was also slightly tore up by the impact force of vessel based on the observation of recorded video.