• Title/Summary/Keyword: Sea dike

Search Result 191, Processing Time 0.026 seconds

Seepage Characteristics of Embedded Rock Layer Under the Earth Fill (성토제 하부에 매설된 사석층의 침투특성)

  • Lee Haeng-Woo;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.63-72
    • /
    • 2005
  • Rocks are dumped to soft marine ground in order to improve trafficability and construction conditions in the tideland reclamation construction sites. Though this rock layer under earth fill has caused in a serious seepage problems after construction, seepage behaviors of this embankment structure is not correctly investigated. Water flow through rock layers is, in general, known as Non-Darcy's flow. However, the embedded rock layer under earth fill is not known whether its flow is governed by Darcy's or Non-Darcy's law. Therefore, a numerical analysis, laboratory model test and filed investigations were performed for analyzing the those seepage characteristics in this research. Results show that there is significance of $95\%$ of confidence between observed heads and seepage rates, and the calculated ones by SAMTLE which is developed under the assumption that the water flows through the two-layer system obey the Darcy's flow. And after operating the hydraulic gradient(i) of $0.10\~0.55$ upon laboratory model, these seepage characteristics of the embedded rock layer show that Reynolds Numbers are less than 10 and the relationship between these velocities of rock layer(v) and hydraulic gradients(i) is linearly proportional with more than 0.79 of the coefficient of correlation $(R^2)$. And the Reynolds Number of the velocity calculated by the relation of v=ki in the embedded rock layer of OO sea dike is $1\~6$. It shows also laminar flow. Based on these results, it is concluded that the seepage characteristics of embedded rock layer under earth fill can be laminar and Darcy's flow.

Daily Variation of Size-Fractionated Chlorophyll a Concentrations and Water Conditions Associated with Freshwater Discharge during Summer in the Yeongsan River Estuary (영산강 하구의 하계 담수 방류와 연관된 크기별 Chlorophyll a와 수환경의 일간 변동)

  • Kim, Sehee;Shin, Yongsik
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.72-80
    • /
    • 2020
  • A sea dike in the Yeongsan River estuary was constructed in 1981 to supply water and reclaim tidal flats for agriculture, separating the estuary into the freshwater and seawater zones. However, the sluice gates are frequently opened and freshwater is discharged in summer when more rainfall is recorded than other seasons, then converting the estuary to brackish water system. In this study, the direct effect of freshwater discharge was investigated by monitoring daily variation in water properties and phytoplankton size structure before and after the freshwater discharge events from 2013 to 2015. Freshwater discharge resulted in a sharp decrease in salinity and dissolved oxygen (DO) at surface water whereas it increased the turbidity of water column. However, salinity did not decrease sharply in 2014 when freshwater was discharged one day before the monitoring and salinity remained low prior to the monitoring. Levels of nutrients especially dissolved inorganic nitrogen (DIN) increased after the discharge and this contributed to potential limitation of nutrients such as P or Si rather than N in the estuary. Freshwater discharge also caused the changes in phytoplankton biomass (chlorophyll a) and size structure although their responses were different between years. The changes may affect growth of grazers and thus structure of marine food web by alternating food availability in the Yeongsan River estuary.

Petrological Characteristics and Origin of Volcaniclasts within the Massive Tuff Breccia Formation from Dokdo Island, Korea (독도 괴상 응회질 각력암층에서 나타나는 화산암편의 암석학적 특성과 기원)

  • Shim, Sung-Ho;Im, Ji-Hyeon;Jang, Yun-Deuk;Choo, Chang-Oh;Park, Byeong-Jun;Kim, Jung-Hun
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.141-156
    • /
    • 2010
  • Dokdo Island, Korea, is located in the East Sea belonging to back arc basin. In this study we examined petrology and geochemistry of massive tuffaceous breccia (MTB) from Dongdo (Eastern islet) and Seodo(Western islet), the two largest islands of Dokdo. Field studies and chemical analysis distinguish the MTB in Dongdo and Seodo. The Dongdo MTB (DMTB) is exposed up to 50 m on the ocean cliff and it has dominant basalt and trachybasalt with moderate amount of trachyte and scoria. On the other hand, Seodo MTB (SMTB), which is preserved between trachyte dike and trachyandesite, is composed of roughly equal amounts of basalt, trachybasalt and trachyte. The location of the islets were related to the source vent having in contact with underlying trachyte lava and differential pyroclastic deposits made them different characteristics. According to trace element analysis of trachytic volcanic clasts, the Ba concentration ranges from 66 to 103 ppm and Sr varies from 44 to 56 ppm in DMTB. However, Br and Sr in SMTB correspondingly showed relatively wide ranges: Br 785-1259 ppm and Sr 466-1230 ppm. These differential trends between DMTB and SMTB, along with the difference in P and Ti, indicate that the crystallization of alkali feldspar, feldspathoid, biotite, apatite and titanium took place differently. Nevertheless, DMTB and SMTB are similar in REE patterns and they are correspondingly characterized by high LREE, low HREE and similar $(La/Yb)_N$ values with 23.9-40.2 in DMTB and 27.4-32.9 in SMTB. These patterns suggest that Dongdo and Seodo might be originated from coeval magma suites. Dokdo island shows high concentrations of Ba, K and Rb. These signatures mark a result attributed to the mantle upwelling because the magma derived from the asthenosphere was metasomatized with subduction-related fluids.

A Study of the Historical Significance of Reclamation and How to Preserve and Utilize Reclamation of Cultural Heritage -Focusing on modern and contemporary reclamation sites in the Saemangeum area- (간척의 역사적 의미와 간척문화유산의 보존·활용 방안 연구 - 새만금 지역 근·현대 간척 시설을 중심으로 -)

  • Lee, Minseok
    • Korean Journal of Heritage: History & Science
    • /
    • v.53 no.2
    • /
    • pp.110-139
    • /
    • 2020
  • Reclamation is the act of creating new lands by constructing dikes in offshore tidal flats to utilize them for various purposes, including the establishment of farmland to secure food for an increasing population. Based on the fact that reclamation has resulted in drastic changes in the environmental, economic, social, and cultural aspects of land expansion and development, population movement, and the formation of cities since ancient times, I reviewed the value of reclamation sites and addressed the issue of how to preserve and utilize them. "Reclamation culture" refers collectively to the recognition and concept system, behavior styles, and cultural products created by changes in the environment, and the tangible, intangible, and natural heritage generated directly and indirectly by reclamation is defined as "reclamation cultural heritage". It shows that the historical background of reclamation accords with prevailing trends, and that the reclamation sites possess cultural heritage value due to their historical, academic, and scarce characteristics. Numerous reclamation cultural heritage sites at the Gwangwhal and Gyehwa dikes are on the verge of being destroyed, with their original function having ended after the construction of Saemangeum Sea Wall. I propose measures to preserve these under the principle that utilization is based on the basic premise of conservation. First of all, modern and contemporary reclamation sites must necessarily be designated and managed as registered cultural properties, local cultural heritage, future heritage, and agricultural heritage. In particular, as it has been confirmed that reclamation sites created after the Goryeo and Joseon dynasties and the 1950s have not been designated as cultural heritage sites. It is necessary to review the characteristics and values of such reclamation sites through a full survey of national reclamation data. Effective and sustainable utilization of reclamation cultural heritage, which has not been acknowledged in the past due to its close relationship with our lives, is necessary to search for hidden stories found within that heritage, to organize governance for the efficient use of reclamation resources, and to build a museum to collect and display the history and culture of the reclaimed areas. Finally, through links with countries with experience in reclamation, we will be able to cope jointly with international issues such as those pertaining to society, culture, and environment, and would be able to implement various projects to further the advancement of human beings.

Analysis of Environmental Factors Related to Seasonal Variation of Bacteria and Heterotrophic Nanoflagellate in Kyeonggi Bay, Korea (경기만에서 박테리아와 종속영양편모류의 계절변화에 미치는 환경요인 분석)

  • Baek, Seung Ho;You, Kai;Han, Myung-Soo
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.2
    • /
    • pp.198-206
    • /
    • 2017
  • From June 2007 to May 2008, seasonal variations of bacterial abundance and heterotrophic nanoflagellate (HNF), together with environmental factors, were investigated at weekly and monthly intervals in Kyeonggi Bay. During the study period, the water temperature and salinity varied from $1.9^{\circ}C{\sim}29.0^{\circ}C$ and 31~35.1 psu, respectively. The concentration of ammonia, nitrate+nitrite, phosphate, and silicate ranged from 0.01 to $3.22{\mu}M$, 2.03 to $15.34{\mu}M$, 0.06 to $1.82{\mu}M$, and 0.03 to $18.3{\mu}M$, respectively. The annual average concentration of Chl. a varied from $0.86{\mu}g\;L^{-1}$ to $37.70{\mu}g\;L^{-1}$; the concentration was twice as much at the surface than at the deeper layers. The abundance of bacteria and HNF ranged from $0.29{\times}10^6$ to $7.62{\times}10^6cells\;mL^{-1}$ and $1.00{\times}10^2$ to $1.26{\times}10^3cells\;mL^{-1}$, respectively. In particular, there were significant correlations between bacteria and HNF abundance (p<0.05), and then the high abundance of HNF was frequently observed with an increase of bacterial abundance in summer (p<0.001). Our results therefore indicate that bacterial abundance in the bay was mainly controlled by resources supplied as organic and inorganic substances from Lake Shihwa due to the daily water exchange after dike construction. Also, the bacterial abundance was significantly controlled by HNF grazing pressure (top-down) in the warm seasons, i.e. excluding winter, in the Kyeonggi Bay.

Long-term Variation and Flux of Organic Carbon in the Human-disturbed Yeongsan River, Korea (영산강의 유기물 플럭스와 장기변동에 대한 연구)

  • CHO, HYEONG-CHAN;CHO, YEONG-GIL
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.4
    • /
    • pp.187-198
    • /
    • 2017
  • Dissolved and particulate organic carbon concentrations and fluxes were measured and estimated for the Yeongsan River during 2006~2015. The dissolved organic carbon (DOC) concentrations ranged from 2.49 to $4.39mg{\cdot}C/L$ with a variance of 30.1% (${\sigma}_x/\bar{x}$), and showed a simple correlation to algal bloom and precipitation. The particulate organic carbon (POC) concentrations had gradually decreased from 6.68 to $0.19mg{\cdot}C/L$ for 10 years, and changed definitely with weir construction in 2011. Based on the relationships between POC and suspended particulate matters and between POC and chlorophyll-a, we found out that the distinct variation of the origin and composition of POC was caused by stagnation and screening effect of the dammed river. The total organic carbon (TOC) concentrations dropped to 52.3% (from 8.26 to $3.94mg{\cdot}C/L$) as the POC concentrations diminished to more than 94.8% after weir construction, in which the DOC forms up to 90.9%. The fluxes of TOC, based on the relationship between the annual TOC concentration and the discharge of Yeongsan dike sluice, were $2.56{\sim}19.41{\times}10^9g{\cdot}C/yr$, and showed a great deal of variability in 2011. Since then the TOC flux dropped to $5.40{\times}10^9$ (2011~2015) from $14.54{\times}10^9g{\cdot}C/yr$ (2006~2010). These results suggest that the weirs trapped annually $1.83{\times}10^9g{\cdot}C$ on a river bed, but released in great levels of dissolved organic form at their exits.

Community Structure of the Macrobenthos in the Soft Bottom of Yongsan River Estuary, Korea 2. The Occurrence of Summer Hypoxia and Benthic Community (영산강 하구역의 연성저질에 서식하는 저서동물 군집 2. 여름철 빈산소 수괴의 출현과 저서동물 분포)

  • LIM Hyun-Sig;PARK Kyung-Yang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.3
    • /
    • pp.343-352
    • /
    • 1998
  • The relationship between summer hypoxia in bottom water layer and benthic community structure was discussed at forty sampling stations in semi-enclosed Youngsan River estuarine bay, Korea. The oxygen deficient layer less than $2.0 mg/\ell$ was widely developed in the inner estuarine stations in summer due to the summer stratification. A total of 141 species was occurred, with a mean density of $1,923 ind./m^2$ and biomass of $79.44\;g/m^2$ in summer season. The species number was significantly increased with the increment of the bottom dissolved oxygen, whereas density and biomass were partially correlated within the low oxygen level of $2.0\;mg/\ell$. These results imply that benthic community structures are affected by bottom oxygen depletion in summer. Cluster analysis showed that the benthic community could be classified into three station groups. These station groups from the species composition coincided with the groups based on the environmental factors. This fact suggests that the overall spatial distribution of macrozoobenthos in Youngsan River estuarine bay in summer should be controlled by the summer hypoxia and clay content of the area. Group-I was located the innermost estunrine bay from Mokpo Harbour to near the dike, where summer hypoxia was developed and one bivalve Theora fragilis, two polychaetes, Tharyx sp. and Lumbrineris longifolia were dominated. Group-II, the central transitory area of the estuarine bay between two another stational groups, where two bivalves Theora fragilis, Raetellops pulchella and a polychaete Tharyx sp. predominated with relatively low density compared to that of Group-I. Group-III, the mouth part of the estunrine bay exposed to the open sea, where a polychaetes Poecilochaetus johnsoni and a bivalve Yoldia Johanni predominated.

  • PDF

Changes of Sedimentary Environment in the Tidal Flat of the Dammed Yeongsan River Estuary, Southwestern Coast of Korea (영산강 하구 갯벌의 퇴적환경 변화)

  • Kim, Young-Gil;Lee, Myong Sun;Chang, Jin Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.6
    • /
    • pp.687-697
    • /
    • 2019
  • By monitoring sediment grain size and level variation of tidal flat surface for 6 years (2005-2011), and also by mooring TISDOS (tidal-flat sediment dynamics observation system) on the low intertidal flat in 2008, we investigated the sedimentary environment of tidal flat in the dammed Yeongsan River Estuary. The tidal flat of the Yeongsan River Estuary lost 82 % of its area because of coastal development projects, and a narrow tidal flat below mean sea level now remains. Most of the tidal flat sediments are composed of silt up to 70-94 %, and show the characteristics of clay deficiency and silt dominance. This is closely related with the coastal development, which led to the destruction of high tidal flats where most mud settled, and the modification of tidal current patterns. Moreover, the estuarine tidal-flat sediments reveal seasonal variation. They are coarse with abundant silt during windy autumn to spring, fine with abundant clay during the less-windy and high-discharge summer. This phenomenon indicates that the behavior of sediment particles on the low intertidal flats of the Yeongsan River Estuary is influenced by wind waves for silt and fresh water discharge and the tidal process for clay. Monitoring results of the altitude of tidal flat surface showed that the study area had eroded at an average rate of -2.6 cm/y during the period of 2005-2011, and also that an unusual deposition with a rate of 4 cm/y occurred in 2010. The erosion can be explained by an increased tidal amplitude and a strengthened ebb-dominant tidal asymmetry after the construction of an estuary dike and the Yeongam Kumho Seawall. The deposition in 2010 seems to have been closely related to the mass production of suspended materials from dredging of the estuary.

Estimating Carrying Capacity of Lake Shihwa for Water Quality Management (수질관리를 위한 시화호의 환경용량 산정)

  • Kim, Hyung-Chul;Choi, Woo-Jeung;Lee, Won-Chan;Koo, Jun-Ho;Lee, Pil-Yong;Park, Sung-Eun;Hong, Seok-Jin;Jang, Ju-Hyoung
    • Journal of Environmental Science International
    • /
    • v.16 no.5
    • /
    • pp.571-581
    • /
    • 2007
  • The mechanism of water pollution in Lake Shihwa, one of highly eutrophicated artificial lakes in Korea, has been studied using a numerical 3D physical-biochemical coupled model. In this study, the model was applied to estimate the contribution of land-based pollutant load to water quality of heavily polluted Lake Shihwa. The chemical oxygen demand(COD) was adopted as an index of the lake water quality, and the spatial distribution of an average COD concentration during the summer from 1999 to 2000 was simulated by the model. The simulated COD showed a good agreement with the observed data. According to reproducibility of COD, the high-est levels between 8 and 9 mg/L were shown at the inner site of the lake with inflow of many rivers and ditches, while the lowest was found to be about 5 mg/L at the southwestern site near to dike gate. In the pre-diction of water quality of Lake Shihwa, COD showed still higher levels than 3 mg/L in case of reduction of 95% for land-based pollutant load. This suggests that the curtailment of land-based pollutant load is not only sufficient but the improvement of sediment quality or the increase of seawater exchange should be considered together to improve a water quality in Lake Shihwa.

Characteristic Distributions of Nutrients and Water Quality Parameters in the Vicinity of Mokpo Harbor after Freshwater Inputs (담수 유입에 따른 목포항 주변해역의 영양염 및 수질인자 분포 특성)

  • Kim, Yeong-Tae;Choi, Yoon-Seok;Cho, Yoon-Sik;Choi, Yong Hyeon;Jeon, Seungryul
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.6
    • /
    • pp.617-636
    • /
    • 2015
  • The Mokpo coastal waters receive discharges from three artificial lakes(Youngsan, Youngam, Geumho) and other terrigenous freshwater inflows(streams, sewage treatment effluent, fresh groundwater), which exhibit very high concentrations of nutrients and/or organic matters. To understand spatial distributions of nutrients(DIN, DIP, DSi) and other water quality parameters(Chl-a, water temperature, salinity, DO, COD, SS), field surveys were conducted at 10 stations in the Mokpo harbor and adjacent estuaries on May, July, September, and November 2008 within 10 days following discharge events from artificial lakes. In this study, the freshwater flow rate influxed by the operation of sea dike sluice had significant influence on water qualities of the Mokpo coastal waters, although nutrient concentrations in other freshwater sources such as streams, sewage treatment effluent, and fresh groundwater were much higher. As a result of statistical analysis, DIN, COD, and Chl-a had a negative correlation with salinity. Therefore it was shown that discharge extents, time, and nutrients from the Youngsan lake were major impact factors dominating the spatial characteristics of nutrients and other water quality parameters in the Mokpo harbor and adjacent waters. However, despite non-discharge from the Youngsan Lake on September of this investigated period, it was observed that the nutrient addition was taking place in the lower layer of the estuary suggesting nutrient supply through different pathways. This result has emphasized the need to implement the combined assessment about the cumulative impacts on the Youngsan Estuary environment and ecosystem due to freshwater inputs derived from the artificial lakes as well as other terrigenous inflows, or benthic releases.