DOI QR코드

DOI QR Code

Daily Variation of Size-Fractionated Chlorophyll a Concentrations and Water Conditions Associated with Freshwater Discharge during Summer in the Yeongsan River Estuary

영산강 하구의 하계 담수 방류와 연관된 크기별 Chlorophyll a와 수환경의 일간 변동

  • Kim, Sehee (Department of Ocean System Engineering, Mokpo National Maritime University) ;
  • Shin, Yongsik (Department of Ocean System Engineering, Mokpo National Maritime University)
  • 김세희 (목포해양대학교 해양시스템공학과) ;
  • 신용식 (목포해양대학교 해양시스템공학과)
  • Received : 2020.11.20
  • Accepted : 2020.12.03
  • Published : 2020.12.16

Abstract

A sea dike in the Yeongsan River estuary was constructed in 1981 to supply water and reclaim tidal flats for agriculture, separating the estuary into the freshwater and seawater zones. However, the sluice gates are frequently opened and freshwater is discharged in summer when more rainfall is recorded than other seasons, then converting the estuary to brackish water system. In this study, the direct effect of freshwater discharge was investigated by monitoring daily variation in water properties and phytoplankton size structure before and after the freshwater discharge events from 2013 to 2015. Freshwater discharge resulted in a sharp decrease in salinity and dissolved oxygen (DO) at surface water whereas it increased the turbidity of water column. However, salinity did not decrease sharply in 2014 when freshwater was discharged one day before the monitoring and salinity remained low prior to the monitoring. Levels of nutrients especially dissolved inorganic nitrogen (DIN) increased after the discharge and this contributed to potential limitation of nutrients such as P or Si rather than N in the estuary. Freshwater discharge also caused the changes in phytoplankton biomass (chlorophyll a) and size structure although their responses were different between years. The changes may affect growth of grazers and thus structure of marine food web by alternating food availability in the Yeongsan River estuary.

영산강 하구는 1981년에 농지 및 농업용수 개발을 위해 하굿둑이 건설되면서 인위적인 변형이 이루어진 시스템으로 하굿둑을 중심으로 담수역과 해수역으로 분리되었다. 하지만 여름철에는 잦은 강우로 인해 수문이 자주 개방되고, 개방 시에 담수가 해수역으로 방류되면서 기수역의 특성을 보이기도 한다. 본 연구에서는 담수 방류의 직접적인 영향을 파악하기 위해 2013년부터 2015년까지 여름철 동안 담수 방류 전후로 일간 모니터링을 실시하여 하계 식물플랑크톤 크기구조와 환경여건 변화를 파악하고자 하였다. 그 결과, 담수 방류는 급격한 염분감소와 탁도를 증가시켜 표층의 용존산소도 감소시키는 것으로 나타났다. 다만 조사 전까지 방류가 지속적으로 이루어진 2014년에는 이미 염분이 감소한 상황이어서 추가적인 방류로 인한 염분의 감소는 나타나지 않았다. 영양염 중에서는 특히 질소성 영양염의 유입이 크게 나타났고, 이로 인해 질소의 상대적 제한 보다는 인이나 규소의 제한 가능성이 크게 나타났다. 식물플랑크톤 생체량 및 크기구조는 연도별로 상이한 결과를 보였으나 결과적으로 담수 방류에 따라 변화를 초래하였고, 방류 후에도 어느 정도 그 경향이 유지되었다. 결론적으로 불규칙적이고 예측이 어려운 담수 방류는 염분, 탁도, 영양염 농도 등의 환경요인뿐만 아니라 식물플랑크톤의 생체량 및 크기구조를 단기적으로 크게 변화시키는 것으로 나타났다. 이러한 변화는 적조와 같은 유해조류발생(HABs) 뿐만 아니라, 먹이량 및 미세먹이망 변화를 통해 상위소비자 그리고 먹이망 구조에도 영향을 미칠 수 있을 것으로 사료된다.

Keywords

References

  1. Adolf JE, Yeager CL, Miller WD, Mallonee ME, Harding LW Jr. 2006. Environmental forcing of phytoplankton floral composition, biomass, and primary productivity in Chesapeake Bay, USA. Estuar Coast Shelf S 67: 108-122. https://doi.org/10.1016/j.ecss.2005.11.030
  2. Alvarez-Gongora C, Herrera-Silveira JA. 2006. Variations of phytoplankton community structure related to water quality trends in a tropical karstic coastal zone. Mar Pollut Bull 52: 48-60. https://doi.org/10.1016/j.marpolbul.2005.08.006
  3. Attrill MJ, Rundle SD. 2002. Ecotone or ecocline: ecological boundaries in estuaries. Estuar Coast Shelf S 55: 929-936. https://doi.org/10.1006/ecss.2002.1036
  4. Bharathi MD, Sarma VVSS, Ramaneswari K. 2018. Intra-annual variations in phytoplankton biomass and its composition in the tropical estuary: Influence of river discharge. Mar Pollut Bull 129: 14-25. https://doi.org/10.1016/j.marpolbul.2018.02.007
  5. Froneman PW, Pakhomov EA, Balarin MG. 2004. Size-fractionated phytoplankton biomass, production and biogenic carbon flux in the eastern Atlantic sector of the Southern Ocean in late austral summer 1997-1998. Deep Sea Res 51: 2715-2729. https://doi.org/10.1016/j.dsr2.2002.09.001
  6. Jounenne F, Lefebvre S, Veron B, Lagadeuc Y. 2005. Biological and physicochemical factors controlling short-term variability in phytoplankton primary production and photosynthetic parameters in a macrotidal ecosystem (eastern English Channel). Estuar Coast Shelf S 65: 421-439. https://doi.org/10.1016/j.ecss.2005.05.023
  7. Lehrter JC. 2008. Regulation of eutrophication susceptibility in oligohaline regions of a northern Gulf of Mexico estuary, Mobile Bay, Alabama. Mar Pollut Bull 56: 1446-1460. https://doi.org/10.1016/j.marpolbul.2008.04.047
  8. Murrell MC, Hagy JD, Lores EM, Greene RM. 2007. Phytoplankton production and nutrient distributions in a subtropical estuary: importance of freshwater flow. Estuar Coast 30: 390-402. https://doi.org/10.1007/BF02819386
  9. Parsons TR, Maita Y, Lalli, CM. 1984. A manual of chemical and biological method for seawater analysis. Pergamon Press Inc., New York, pp 173.
  10. Pritchard DW. 1967. What is and estuary: physical viewpoint. Science 80: 3-5.
  11. Saeck EA, Hadwen WL, Rissik D, O'Brien KR, Burford MA. 2013. Flow events drive patterns of phytoplankton distribution along a river-estuary-bay continuum. Mar. Freshwater Res, 64: 655-670. https://doi.org/10.1071/MF12227
  12. Sin Y, Hyun B, Jeong B, Soh HY. 2013. Impacts of eutrophic freshwater inputs on water quality and phytoplankton size structure in a temperate estuary altered by a sea dike. Mar Environ Res 85: 54-63. https://doi.org/10.1016/j.marenvres.2013.01.001
  13. Sin Y, Jeong B. 2015. Short-term variations of phytoplankton communities in response to anthropogenic stressors in a highly altered temperate estuary. Estuar Coast Shelf S 156: 83-91. https://doi.org/10.1016/j.ecss.2014.09.022
  14. Sin Y, Lee E, Lee Y, Shin K-H. 2015. The river-estuarine continuum of nutrients and phytoplankton communities in an estuary physically divided by a sea dike. Estuar Coast Shelf S 163: 279-289. https://doi.org/10.1016/j.ecss.2014.12.028
  15. Sin Y, Lee H. 2020. Changes in hydrology, water, quality, and algal blooms in a freshwater system impounded with engineered structures in a temperate monsoon river estuary. J Hydrol-Reg Stud 32: 100744. https://doi.org/10.1016/j.ejrh.2020.100744
  16. Smith VH. 2006. Responses of estuarine and coastal marine phytoplankton to nitrogen and phosphorus enrichment. Limnol Oceanogr 51: 377-384. https://doi.org/10.4319/lo.2006.51.1_part_2.0377
  17. Song E-S, Shin Y-S. 2008. Spatio-temporal fluctuations of size-structured phytoplankton over an annual cycle in the Youngsan Lake. Korean J Ecol Environ 41: 530-540.
  18. Song E-S, Cho K-A, Shin Y-S. 2015. Exploring the dynamics of dissolved oxygen and vertical density structure of water column in the Youngsan Lake. J Envrion Sci Int 24: 163-174. https://doi.org/10.5322/JESI.2015.24.2.163
  19. Telesh IV, Schubert H, Skarlato SO. 2011. Revisiting Remane's concept: evidence for high plankton diversity and a protistan species maximum in the horohalinicum of the Baltic Sea. Mar Ecol Prog Ser 421: 1-11. https://doi.org/10.3354/meps08928
  20. Tockner K, Stanford JA. 2002. Riverine flood plains: present state and future trends. Environ Conserv 29: 308-330. https://doi.org/10.1017/S037689290200022X
  21. Totti C, Cangini M, Ferrari C, Kraus R, Pompei M, Pugnetti A, Romagnoli T, Vanucci S, Socal G. 2005. Phytoplankton size-distribution and community structure in relation to mucilage occurrence in the northern Adriatic Sea. Sci Total Environ 353: 204-217. https://doi.org/10.1016/j.scitotenv.2005.09.028
  22. Wu X, Duan H, Bi N, Yuan P, Wang A, Wang H. 2016. Interannual and seasonal variation of chlorophyll-a off the Yellow River Mouth (1997-2012): Dominance of river inputs and coastal dynamics. Estuar Coast Shelf S 183: 402-412. https://doi.org/10.1016/j.ecss.2016.08.038