• Title/Summary/Keyword: Sea Surface Wind

Search Result 489, Processing Time 0.038 seconds

夏季 韓國 南東海域에서 湧昇과 關聯된 바람, 海水面 및 表層水溫의 變化 TEVARIATIONS OF SEA LEVEL AND SEA SURFACE TEPERATURE ASSOCIATED WITH WIND -INDUCED UPWELLING IN THE SOUTH

  • Lee, Jae Chul
    • 한국해양학회지
    • /
    • v.18 no.2
    • /
    • pp.149-160
    • /
    • 1983
  • Extensive wind, sea level and sea surface temperature (SST) data collected along the east coast of Korea in 1973-1979 were used to ascribe the variations of sea level and SST associated with wind forcing during summer. Alongshore components of wind were dominant but the offshore components were little significance in the southeast coast in summer. The variations in SST and sea level adjusted barometricallyagreed with the upwelling-downwelling processes and showed a rapid response to wind.Appearance of cold water to the surface in the upwelling region concurred well with te periods of positive y-component wind when the tangential line at Ulgi was takem as the y-axis. In general, SST at Ulgi and Gampo as well as the adjusted sea level at Pohang, Ulsan and Busan decreased significantly when strong winds favorable for upwelling persisted for more then three days whereas they increased during the relaxation or unfavorable periods. The period of an upwelling event, on the average, was about 10 days and the mean speed of alongshore sind was 4.0m/sec.

  • PDF

Tropical Night (Nocturnal Thermal High) in the Mountainous Coastal City

  • Choi, Hyo
    • Journal of Environmental Science International
    • /
    • v.13 no.11
    • /
    • pp.965-985
    • /
    • 2004
  • The investigation of driving mechanism for the formation of tropical night in the coastal region, defined as persistent high air temperature over than 25$^{\circ}C$ at night was carried out from August 14 through 15, 1995. Convective boundary layer (CBL) of a 1 km depth with big turbulent vertical diffusion coefficients is developed over the ground surface of the inland basin in the west of the mountain and near the top of the mountain, while a depth of thermal internal boundary layer (TIBL) like CBL shrunken by relatively cool sea breeze starting at 100 km off the eastern sea is less than 150 m from the coast along the eastern slope of the mountain. The TIBL extends up to the height of 1500 m parallel to upslope wind combined with valley wind and easterly sea breeze from the sea. As sensible heat flux convergences between the surface and lower atmosphere both at the top of mountain and the inland coast are much greater than on the coastal sea, sensible heat flux should be accumulated inside both the TIBL and the CBL near the mountain top and then, accumulated sensible heat flux under the influence of sea breeze circulation combined with easterly sea breeze from sea to inland and uplifted valley wind from inland to the mountain top returning down toward the eastern coastal sea surface should be transported into the coast, resulting in high air temperatures near the coastal inland. Under nighttime cooling of ground surface after sunset, mountain wind causes the daytime existed westerly wind to be an intensified westerly downslope wind and land breeze further induces it to be strong offshore wind. No sensible heat flux divergence or very small flux divergence occurs in the coast, but the flux divergences are much greater on the top of the mountain and along its eastern slope than on the coastal inland and sea surfaces. Thus, less cooling down of the coastal surface than the mountain surface and sensible heat transfer from warm pool over the coast into the coastal surface produce nocturnal high air temperature on the coastal inland surfaces, which is not much changed from daytime ones, resulting in the persistence of tropical night (nocturnal thermal high) until the early in the morning.

Calculating Sea Surface Wind by Considering Asymmetric Typhoon Wind Field (비대칭형 태풍 특성을 고려한 해상풍 산정)

  • Hye-In Kim;Wan-Hee Cho;Jong-Yoon Mun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.770-778
    • /
    • 2023
  • Sea surface wind is an important variable for elucidating the atmospheric-ocean interactions and predicting the dangerous weather conditions caused by oceans. Accurate sea surface wind data are required for making correct predictions; however, there are limited observational datasets for oceans. Therefore, this study aimed to obtain long-period high-resolution sea surface wind data. First, the ERA5 reanalysis wind field, which can be used for a long period at a high resolution, was regridded and synthesized using the asymmetric typhoon wind field calculated via the Generalized Asymmetric Holland Model of the numerical model named ADvanced CIRCulation model. The accuracy of the asymmetric typhoon synthesized wind field was evaluated using data obtained from Korea Meteorological Administration and Japan Meteorological Administration. As a result of the evaluation, it was found that the asymmetric typhoon synthetic wind field reproduce observations relatively well, compared with ERA5 reanalysis wind field and symmetric typhoon synthetic wind field calculated by the Holland model. The sea surface wind data produced in this study are expected to be useful for obtaining storm surge data and conducting frequency analysis of storm surges and sea surface winds in the future.

An Improved Semi-Empirical Model for Radar Backscattering from Rough Sea Surfaces at X-Band

  • Jin, Taekyeong;Oh, Yisok
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.2
    • /
    • pp.136-140
    • /
    • 2018
  • We propose an improved semi-empirical scattering model for X-band radar backscattering from rough sea surfaces. This new model has a wider validity range of wind speeds than does the existing semi-empirical sea spectrum (SESS) model. First, we retrieved the small-roughness parameters from the sea surfaces, which were numerically generated using the Pierson-Moskowitz spectrum and measurement datasets for various wind speeds. Then, we computed the backscattering coefficients of the small-roughness surfaces for various wind speeds using the integral equation method model. Finally, the large-roughness characteristics were taken into account by integrating the small-roughness backscattering coefficients multiplying them with the surface slope probability density function for all possible surface slopes. The new model includes a wind speed range below 3.46 m/s, which was not covered by the existing SESS model. The accuracy of the new model was verified with two measurement datasets for various wind speeds from 0.5 m/s to 14 m/s.

The Modulation of Currents and Waves near the Korean Marginal seas computed by using MM5/KMA and WAVEWATHC-III model

  • Seo, Jang-Won;Chang, You-Soon
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.37-42
    • /
    • 2003
  • We have analyzed the characteristics of the sea surface winds and wind waves near the Korean marginal seas on the basis of prediction results of the sea surface winds from MM5/KMA model, which is being used for the operation system at the Korea Meteorological observation buoy data to verify the model results during Typhoon events. The correlation coefficients between the models and observation data reach up to about 95%, supporting that these models satisfactorily simulate the sea surface winds and wave heights even at the coastal regions. Based on these verification results, we have carried out numerical experiments about the wave modulation. When there exist an opposite strong current for the propagation direction of the waves or wind direction, wave height and length gets higher and shorter, and vice versa. It is proved that these modulations of wave parameters are well generated when wind speed is relatively week.

  • PDF

EVALUATION OF MARINE SURFACE WINDS OBSERVED BY ACTIVE AND PASSIVE MICROWAVE SENSORS ON ADEOS-II

  • Ebuchi, Naoto
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.146-149
    • /
    • 2006
  • Marine surface winds observed by two microwave sensors, SeaWinds and Advanced Microwave Scanning Radiometer (AMSR), on the Advanced Earth Observing Satellite-II (ADEOS-II) are evaluated by comparison with off-shore moored buoy observations. The wind speed and direction observed by SeaWinds are in good agreement with buoy data with root-mean-squared (rms) differences of approximately 1 m $s^{-1}$ and $20^{\circ}$, respectively. No systematic biases depending on wind speed or cross-track wind vector cell location are discernible. The effects of oceanographic and atmospheric environments on the scatterometry are negligible. The wind speed observed by AMSR also exhibited reasonable agreement with the buoy data in general with rms difference of 1.2 m $s^{-1}$. Systematic bias which was observed in earlier versions of the AMSR winds has been removed by algorithm refinements. Intercomparison of wind speeds globally observed by SeaWinds and AMSR on the same orbits also shows good agreements. Global wind speed histograms of the SeaWinds data and European Centre for Medium-range Weather Forecasts (ECMWF) analyses agree precisely with each other, while that of the AMSR wind shows slight deviation from them.

  • PDF

Monthly-mean sea surface winds over the adjacent seas of the Korea Peninsular (한국근해의 월평균 해상풍)

  • 나정열;서장원
    • 한국해양학회지
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1992
  • The sea surface winds are computed over the adjacent seas of Korea from the twice-dayily weather maps for the ten-year period 1978-1987 by using the Cardone model. Monthly mean wind-stress and wind0stress curl are also calculated and given as maps. the computed surface winds are compared with observed one at the JMA (Japan Meteorological Agency) Buoy. and the results show a good consistency in speed and direction. In particular, the magnitude of mean wind-stress is turned out to be twice bigger than the previous results over the sea of Japan. Monthly distributions of wind-stress curl reveal that over the yellow sea by the longitudinal boundary of $120^{\circ}{\;}~{\;}125^{\circ}{\;}E$, the area of negative cur exists over the western part of the sea except summer season, while the positive sign of the curl prevails over the eastern part of the Yellow Sea. However, over the Sea of Japan, with two positive maxima at the northern part and near the Wonsan Bay, the positive curl in the northern half and the negative curl in the southern of the sea characterize the monthly mean distribution of the wind-stress curl.

  • PDF

Monthly Wind Stress and Wind Stress Curl Distributions in the Eastern Sea(Japan Sea) (동해상의 월별 바람응력 및 바람응력컬 분포)

  • 김철호;최병호
    • Water for future
    • /
    • v.19 no.3
    • /
    • pp.239-248
    • /
    • 1986
  • Monthly wind stress, wind stress curl and volume transport stream functions are computed in the Eastern Sea(Japan Sea) based upon observed wind and atmospheric pressure data respectively. The presented two results show different distributios on locality and season but as common features the results reveal the northwesterly surface wind stress \ulcorner 새 the monsoon in winter, south to southwesterly wind stress \ulcorner 새 the southerly wind in summer and strond anticyclonic curl in the northern part on the Eastern Sea(Japan Sea) in winter. In the distributions obtained from the sea level atmospheric pressure data, the maximum value of the wind stress and of curls of small scales are shown off the southeast coast of Siberia and northeast coast of Korea. Volume transport distributions obtained from the Sverdrup relationship suggest that the strong northward boundary current can be formed along the northeast coast of Korea in winter and weak southward boundary current in summer.

  • PDF

Ratio of Mixing Effects due to Wind, Surface Cooling, and Tide on West Coast of Korea in December, 1998

  • Park, Yong-Kyu;Lee, Byung-Gul
    • Environmental Sciences Bulletin of The Korean Environmental Sciences Society
    • /
    • v.4 no.4
    • /
    • pp.249-253
    • /
    • 2000
  • Data obtained from a cruise from 4~12 December, 1998 was analyzed to estimate the mixing effects of wind, surface cooling, and tide. A band denoting a mixing area with a temperature difference of less than 1$^{\circ}C$ between the sea surface and the bottom extended 40~60 km from the coast into the open sea, following 125$^{\circ}$ 30\` E in longitude. This band was divided into two areas; a well-mixed area close to the coast and a stratified region in the open sea. The mixing effect due to the wind was only 2%, yet the mixing effect due to the tides was about 68%. This indicates that surface cooling and tides were the major factors involved in the mixing mechanism on the west coast during the cooling season.

  • PDF

BORA IN THE ADRIATIC SEA AND BLACK SEA IMAGED BY THE ENVISAT SYNTHETIC APERTURE RADAR

  • Ivanov, Andrei Yu.;Alpers, Werner
    • Proceedings of the KSRS Conference
    • /
    • v.2
    • /
    • pp.964-968
    • /
    • 2006
  • Bora events over the Adriatic Sea and Black Sea are investigated by using synthetic aperture radar (SAR) images acquired by the Advanced Synthetic Aperture Radar (ASAR) onboard the European Envisat satellite. These images show pronounced elongated patterns of increased sea surface roughness caused by bora winds. The comparison of the SAR images with wind fields derived from Quikscat data confirms that in all cases a strong northeasterly wind was blowing from the mountains onto the sea. It is shown that the SAR images reveal details of the spatial extent of the bora wind fields over the sea which cannot be obtained by other instruments. Furtheremore, also quantitative information on the wind field is extracted from the SAR images by using a wind scatterometer model.

  • PDF