• Title/Summary/Keyword: Sea Surface Wind

Search Result 488, Processing Time 0.027 seconds

The influence of sea surface temperature for vertical extreme wind shear change and its relation to the atmospheric stability at coastal area

  • Geonhwa Ryu;Young-Gon Kim;Dongjin Kim;Sang-Man Kim;Min Je Kim;Wonbae Jeon;Chae-Joo Moon
    • Wind and Structures
    • /
    • v.36 no.3
    • /
    • pp.201-213
    • /
    • 2023
  • In this study, the effect of sea surface temperature (SST) on the distribution of vertical wind speed in the atmospheric boundary layer of coastal areas was analyzed. In general, coastal areas are known to be more susceptible to various meteorological factors than inland areas due to interannual changes in sea surface temperature. Therefore, the purpose of this study is to analyze the relationship between sea surface temperature (ERA5) and wind resource data based on the meteorological mast of Høvsøre, the test bed area of the onshore wind farm in the coastal area of Denmark. In addition, the possibility of coastal disasters caused by abnormal vertical wind shear due to changes in sea surface temperature was also analyzed. According to the analysis of the correlation between the wind resource data at met mast and the sea surface temperature by ERA5, the wind speed from the sea and the vertical wind shear are stronger than from the inland, and are vulnerable to seasonal sea surface temperature fluctuations. In particular, the abnormal vertical wind shear, in which only the lower wind speed was strengthened and appeared in the form of a nose, mainly appeared in winter when the atmosphere was near-neutral or stable, and all occurred when the wind blows from the sea. This phenomenon usually occurred when there was a sudden change in sea surface temperature within a short period of time.

Comparison of variations in sea surface height with sea surface temperature and wind field in the Tropical Pacific Ocean

  • Chul, Kang-Sung;Schumann, Robert;Murai, Shunji;Kiyoshi, Honda;Kim, Young-Seup
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.225-230
    • /
    • 1998
  • The purpose of this study is to contribute the development of an El Nino prediction model. The objectives of the study are to (1) extract sea surface height data from the TOPEI/Poseidon altimeter, and (2) compare the relations among the sea surface height, sea surface temperature and wind field. NOAA AVHRR Multi-channel data is used for sea surface temperature and wind data is derived from ERS 1, 2 AMI wind scatterometer. The results showed that sea surface height has increased significantly during the El Nino season. The sea surface height is positively related to sea surface temperature and negatively related to zonal wind.

  • PDF

Marine Meteorological Characteristics in 2006-2007 : Sea Surface Wind (2006-2007년 해양기상 특성 : 해상풍)

  • You, Sung Hyup;Kwon, Ji Hye;Kim, Jeong-Sik
    • Atmosphere
    • /
    • v.19 no.2
    • /
    • pp.145-154
    • /
    • 2009
  • This study compared the sea surface wind pattern between model results from KMA operational model (RDAPS) and retrieved results from QuickSCAT in the 2006-2007 year. The mean spatial distributions of sea surface wind of RDAPS and QuikSCAT show the prominent seasonal patterns of summer and winter season adjacent to Korean Peninsular. The magnitude of sea surface wind predicted by RDAPS is weaker than that of QuikSCAT in most north Pacific ocean. In summer of 2006 positive bias with the maximum of 1 m/s is appeared in broad region of north Pacific ocean, however. the positive bias region is decreased to small region in 2007. Even though the predicted sea wind by RDAPS is stronger(weaker) than observed one by QuikSCAT in summer (winter), the RDAPS model simulate well the sea surface wind adjacent to Korean peninsular.

Modification of Sea Water Temperature by Wind Driven Current in the Mountainous Coastal Sea

  • Choi, Hyo;Kim, Jin-Yun
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.177-184
    • /
    • 2003
  • Numerical simulation on marine wind and sea surface elevation was carried out using both three-dimensional hydrostatic and non-hydrostatic models and a simple oceanic model from 0900 LST, August 13 to 0900 LST, August 15, 1995. As daytime easterly meso-scale sea-breeze from the eastern sea penetrates Kangnung city in the center part as basin and goes up along the slope of Mt. Taegullyang in the west, it confronts synoptic-scale westerly wind blowing over the top of the mountain at the mid of the eastern slope and then the resultant wind produces an upper level westerly return flow toward the East Sea. In a narrow band of weak surface wind within 10km of the coastal sea, wind stress is generally small, less than l${\times}$10E-2 Pa and it reaches 2 ${\times}$ 10E-2 Pa to the 35 km. Positive wind stress curl of 15 $\times$ 10E-5Pa $m^{-1}$ still exists in the same band and corresponds to the ascent of 70 em from the sea level. This is due to the generation of northerly wind driven current with a speed of 11 m $S^{-1}$ along the coast under the influence of south-easterly wind and makes an intrusion of warm waters from the southern sea into the northern coast, such as the East Korea Warm Current. On the other hand, even if nighttime downslope windstorm of 14m/s associated with both mountain wind and land-breeze produces the development of internal gravity waves with a hydraulic jump motion of air near the coastal inland surface, the surface wind in the coastal sea is relatively moderate south-westerly wind, resulting in moderate wind stress. Negative wind stress curl in the coast causes the subsidence of the sea surface of 15 em along the coast and south-westerly coastal surface wind drives alongshore south-easterly wind driven current, opposite to the daytime one. Then, it causes the intrusion of cold waters like the North Korea Cold Current in the northern coastal sea into the narrow band of the southern coastal sea. However, the band of positive wind stress curl at the distance of 30km away from the coast toward further offshore area can also cause the uprising of sea waters and the intrusion of warm waters from the southern sea toward the northern sea (northerly wind driven current), resulting in a counter-clockwise wind driven current. These clockwise and counter-clockwise currents much induce the formation of low clouds containing fog and drizzle in the coastal region.

  • PDF

Can we obtain sea-surface flow information from satellite scatterometer winds\ulcorner

  • Park, Kyung-Ae;Cornillon, Peter;Chung, Jong-Yul;Kim, Kuh
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.621-626
    • /
    • 2002
  • A satellite scatterometer is a microwave radar sensor used to measure the backscattering at a sea surface. This instrument transmits radar pulses to the sea surface and measure the radar energy reflected back towards the source. Changes in wind velocity make sea surface roughness change and then affect on backscattered power. This gives us information of sea surface wind speed. Directions of wind vectors are acquired by multiple, collocated, and nearly simultaneous measurements. It should be noted that the scatterometer observes not the wind directly but the wind stress vector relative to the surface current. This suggests the possibility that the satellite scatterometer winds can include the effect of the surface current. This study shows the evidence that scatterometer measure surface wind stress, not surface winds and presents the velocity structure of oceanic warm and cold eddies.

  • PDF

Development of Sea Surface Wind Monitoring System using Marine Radar (선박용 레이다를 이용한 해상풍 모니터링 시스템 개발)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • A wave buoy commonly used for measurements in marine environments is very useful for measurements on the sea surface wind and waves. However, it is constantly exposed to external forces such as typhoons and the risk of accidents caused by ships. Therefore, the installation and maintenance charges are large and constant. In this study, we developed a system for monitoring the sea surface wind using marine radar to provide spatial and temporal information about sea surface waves at a small cost. The essential technology required for this system is radar signal processing. This paper also describes the analytical process of using it for monitoring the sea surface wind. Consequently, developing this system will make it possible to replace wave buoys in the near future.

Study on planetary boundary layer schemes suitable for simulation of sea surface wind in the southeastern coastal area, Korea (한반도 남동해안 해상풍 모의에 적합한 경계층 물리방안 연구)

  • Kim Yoo-Keun;Jeong Ju-Hee;Bae Joo-Hyun;Song Sang-Keun;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.11
    • /
    • pp.1015-1026
    • /
    • 2005
  • The southeastern coastal area of the Korean peninsula has a complex terrain including an irregular coastline and moderately high mountains. This implies that mesoscale circulations such as mountain-valley breeze and land-sea breeze can play an important role in wind field and ocean forcing. In this study, to improve the accuracy of complex coastal rind field(surface wind and sea surface wind), we carried out the sensitivity experiments based on PBL schemes in PSU/NCAR Mesoscale Model (MM5), which is being used in the operational system at Korea Meteorological Administration. Four widely used PBL parameterization schemes in sensitivity experiments were chosen: Medium-Range Forecast (MRF), High-resolution Blackadar, Eta, and Gayno-Seaman scheme. Thereafter, case(2004. 8. 26 - 8. 27) of weak-gradient flows was simulated, and the time series and the vertical profiles of the simulated wind speed and wind direction were compared with those of hourly surface observations (AWS, BUOY) and QuikSCAT data. In the simulated results, the strength of rind speed of all schemes was overestimated in complex coastal regions, while that of about four different schemes was underestimated in islands and over the sea. Sea surface wind using the Eta scheme showed the highest wind speed over the sea and its distribution was similar to the observational data. Horizontal distribution of the simulated wind direction was very similar to that of real observational data in case of all schemes. Simulated and observed vertical distribution of wind field was also similar under boundary layer(about 1 km), however the simulated wind speed was underestimated in upper layer.

Global Distribution of Surface Layer Wind Speed for the years 2000-2009 Based on the NCEP Reanalysis (NCEP 재분석 자료를 이용한 전지구 지표층의 2000-2009년 풍속 분포)

  • Byon, Jae-Young;Choi, Young-Jean;Lee, Jae-Won
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.439-446
    • /
    • 2011
  • NCEP reanalysis data were analyzed in order to provide distribution of global wind resource and wind speed in the surface layer for the years 2000-2009. Wind speed at 10 m above ground level (AGL) was converted to wind speed at 80 m above the ground level using the power law. The global average 80 m wind speed shows a maximum value of $13ms^{-1}$ at the storm track region. High wind speed over the land exists in Tibet, Mongolia, Central North America, South Africa, Australia, and Argentina. Wind speed over the ocean increased with a large value in the South China Sea, Southeast Asia, East Sea of the Korea. Sea surface wind in Western Europe and Scandinavia are suitable for wind farm with a value of $7-8ms^{-1}$. Areas with great potential for wind farm are also found in Eastern and Western coastal region of North America. Sea surface wind in Southern Hemisphere shows larger values in the high latitude of South America, South Africa and Australia. The distribution of low-resolution reanalysis data represents general potential areas for wind power and can be used to provide information for high-resolution wind resource mapping.

Impact of High-Resolution Sea Surface Temperatures on the Simulated Wind Resources in the Southeastern Coast of the Korean Peninsula (고해상도 해수면온도자료가 한반도 남동해안 풍력자원 수치모의에 미치는 영향)

  • Lee, Hwa-Woon;Cha, Yeong-Min;Lee, Soon-Hwan;Kim, Dong-Hyeok
    • Journal of Environmental Science International
    • /
    • v.19 no.2
    • /
    • pp.171-184
    • /
    • 2010
  • Accurate simulation of the meteorological field is very important to assess the wind resources. Some researchers showed that sea surface temperature (SST) plays a leading role on the local meterological simulation. New Generation Sea Surface Temperature (NGSST), Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA), and Real-Time Global Sea Surface Temperature (RTG SST) have different spatial distribution near the coast and OSTIA shows the best accuracy compared with buoy data in the southeastern coast of the Korean Peninsula. Those SST products are used to initialize the Weather Research and Forecasting (WRF) Model for November 13-23 2008. The simulation of OSTIA shows better result in comparison with NGSST and RTG SST. NGSST shows a large difference with OSTIA in horizontal and vertical wind fields during the weak synoptic condition, but wind power density shows a large difference during strong synoptic condition. RTG SST shows the similar patterns but smaller the magnitude and the extent.

Improvements in the simulation of sea surface wind over the complex coastal area- I : Assessment of current operational model (복잡 해안지역 해상풍 모의의 정확도 개선- I : 현업모델의 평가)

  • Bae Joo-Hyun;Kim Yoo-Keun;Oh In-Bo;Jeong Ju-Hee;Kweon Ji-Hye;Seo Jang-Won
    • Journal of Environmental Science International
    • /
    • v.14 no.7
    • /
    • pp.657-667
    • /
    • 2005
  • In this study, we focused on the improvements in the simulation of sea surface wind over the complex coastal area. MM5 model being currently used to predict sea surface wind at Korea Meteorological Administration, was used to verify the accuracy to estimate the local wind field. A case study was performed on clear days with weak wind speed(4 m/s), chosen by the analysis of observations. The model simulations were conducted in the southeastern area of Korea during the selected periods, and observational data such as AWS, buoy and QuikSCAT were used to compare with the calculated wind components to investigate if simulated wind field could follow the tendency of the real atmospheric wind field. Results showed that current operational model, MM5, does not estimate accurately sea surface wind and the wind over the coastal area. The calculated wind speed was overestimated along the complex coastal regions but it was underestimated in islands and over the sea. The calculated diurnal changes of wind direction could not follow well the tendency of the observed wind, especially at nighttime. In order to exceed the limitations, data assimilation with high resolution data and more specificated geographical information is expected as a next best policy to estimate accurately the environment of local marine wind field.