Browse > Article
http://dx.doi.org/10.14191/Atmos.2011.21.4.439

Global Distribution of Surface Layer Wind Speed for the years 2000-2009 Based on the NCEP Reanalysis  

Byon, Jae-Young (Korea Meteorological Administration)
Choi, Young-Jean (Korea Meteorological Administration)
Lee, Jae-Won (Korea Meteorological Administration)
Publication Information
Atmosphere / v.21, no.4, 2011 , pp. 439-446 More about this Journal
Abstract
NCEP reanalysis data were analyzed in order to provide distribution of global wind resource and wind speed in the surface layer for the years 2000-2009. Wind speed at 10 m above ground level (AGL) was converted to wind speed at 80 m above the ground level using the power law. The global average 80 m wind speed shows a maximum value of $13ms^{-1}$ at the storm track region. High wind speed over the land exists in Tibet, Mongolia, Central North America, South Africa, Australia, and Argentina. Wind speed over the ocean increased with a large value in the South China Sea, Southeast Asia, East Sea of the Korea. Sea surface wind in Western Europe and Scandinavia are suitable for wind farm with a value of $7-8ms^{-1}$. Areas with great potential for wind farm are also found in Eastern and Western coastal region of North America. Sea surface wind in Southern Hemisphere shows larger values in the high latitude of South America, South Africa and Australia. The distribution of low-resolution reanalysis data represents general potential areas for wind power and can be used to provide information for high-resolution wind resource mapping.
Keywords
Global wind speed; Surface layer; NCEP reanalysis; Power law;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 김건훈, 경남호, 김은일, 이철형, 박완순, 김홍우, 주영철, 이동현, 유승덕, 2002: 국내 풍력자원 조사 및 풍력단지 사전 개발 연구, 한국에너지기술연구원, KIERA24510, 303pp.
2 변재영, 최영진, 서범근, 2010: 중규모 모델 WRF로부터 모의된 한반도 풍력-기상자원 특성. 대기, 20, 195-210.
3 서은경, 윤준희, 박영산, 2009: 북한 지역에서의 30년 동안의 평균 바람 지도. 한국지구과학회지, 30, 845-854.
4 Archer, C. L., and M. Z. Jacobson, 2005: Evaluation of global wind power. J. Geophys. Res., 110, D12110, doi:10.1029/2004JD005462.   DOI
5 Byrkjedal, O., and E. Berge, 2009: The use of WRF for wind resource mapping in Norway. 9th WRF user's workshop, Boulder, CO., NCAR, P9.18.
6 Halpern, D., A. Hollingsworth, and F. Wentz, 1994: ECMWF and SSM/I global surface wind speeds. J. Atmos. and Ocean. Tech., 11, 779-788.   DOI   ScienceOn
7 Kanamitsu, M., W. Ebisuzaki, J. Wollen, S.-K. Yang, J. J. Hnilo, M. Fiorino, and G. L. Potter, 2002: NCEP-DOE AMIP-II reanalysis (R-2). Bull. of Amer. Met. Soc., 83, 1631-1643.   DOI   ScienceOn
8 Khan, M. J., and Iqbal, M. T., 2004: Wind energy resource map of Newfoundland. Renewable Energy, 29, 1211-1221.   DOI   ScienceOn
9 Weisser, D. and Foxon, T. J., 2003: Implications of seasonal and diurnal variation of wind velocity for power output estimation of a turbine: A case study of Grenada. Int. J. Energy Res., 27, 1165-1179.   DOI   ScienceOn
10 Yim, S. H. L., J. C. H. Fung, A. K. H. Lau, and S. C. Kot, 2007: Developing a high- resolution wind map for a complex terrain with a coupled MM5/CALMET system. J. Geophys. Res., 112(D5), 5106-5121.   DOI
11 Yin, X., 2000: Surface wind speed over land: A global view. J. Appl. Meteor., 39, 1861-1865.   DOI   ScienceOn