• 제목/요약/키워드: Se gas

검색결과 645건 처리시간 0.032초

STREAMING CIRCUMNUCLEAR GAS OF THE SEYFERT 2 GALAXY NGC 5728

  • Son, Dong-Hoon;Hyung, Siek;Lee, Seong-Jae;Ferruit, Pierre
    • 천문학회지
    • /
    • 제42권5호
    • /
    • pp.125-134
    • /
    • 2009
  • We investigated the circumnuclear region of the Seyfert 2 galaxy NGC 5728, using the CFHT 3.6 m OASIS $[S_{II}]$, $[O_{III}]$ & $H\beta$ spectral images complemented with the IUE spectra. The physical condition of the circumnuclear zone has been derived: the gas density (indicated by $[S_{II}]$6716/31 ratio) around the C core is generally similar to that around the NW core, i.e., $\sim500cm^{-3}$. However, there appears to be evidence of a higher density shell in front of the NW core, $\sim10^4cm^{-3}$ at -250 km $s^-1$. The IUE $Si_{III}$]1892/$C_{III}$]1909 ratio implies a possible presence of a broad emission region of gas densities of $\sim10^{10}cm^{-3}$. The SE cone and surrounding area show several prominent features, while the NW cone does not show any particular structure: we identified three prominent blobs in the SE cone and one possible candidate in the NW cone. The outflow activities exist within the relatively large conic opening angle. We discussed the possibility of inflow or outflow activities of blobs found in the circumnuclear region of NGC 5728. The gas around two cores, two cones, and several blobs, is likely to be excited by the AGN hot source(s).

전해증착 Cu(In,Ga)Se2 태양전지 박막의 열처리 특성 (Annealing Characteristics of Electrodeposited Cu(In,Ga)Se2 Photovoltaic Thin Films)

  • 채수병;신수정;최재하;김명한
    • 한국재료학회지
    • /
    • 제20권12호
    • /
    • pp.661-668
    • /
    • 2010
  • Cu(In,Ga)$Se_2$(CIGS) photovoltaic thin films were electrodeposited on Mo/glass substrates with an aqueous solution containing 2 mM $CuCl_2$, 8 mM $InCl_3$, 20 mM $GaCl_3$ and 8mM $H_2SeO_3$ at the electrodeposition potential of -0.6 to -1.0 V(SCE) and pH of 1.8. The best chemical composition of $Cu_{1.05}In_{0.8}Ga_{0.13}Se_2$ was found to be achieved at -0.7 V(SCE). The precursor Cu-In-Ga-Se films were annealed for crystallization to chalcopyrite structure at temperatures of 100-$500^{\circ}C$ under Ar gas atmosphere. The chemical compositions, microstructures, surface morphologies, and crystallographic structures of the annealed films were analyzed by EPMA, FE-SEM, AFM, and XRD, respectively. The precursor Cu-In-Ga-Se grains were grown sparsely on the Mo-back contact and also had very rough surfaces. However, after annealing treatment beginning at $200^{\circ}C$, the empty spaces between grains were removed and the grains showed well developed columnar shapes with smooth surfaces. The precursor Cu-In-Ga-Se films were also annealed at the temperature of $500^{\circ}C$ for 60 min under Se gas atmosphere to suppress the Se volatilization. The Se amount on the CIGS film after selenization annealing increased above the Se amount of the electrodeposited state and the $MoSe_2$ phase occurred, resulting from the diffusion of Se through the CIGS film and interaction with Mo back electrode. However, the selenization-annealed films showed higher crystallinity values than did the films annealed under Ar atmosphere with a chemical composition closer to that of the electrodeposited state.

Colloidal Synthesis of Octahedral Shaped PbSe Nanocrystals from Lead Oleate and Se : Temperature Effect

  • Gokarna, Anisha;Jun, Ki-Won;Khanna, P.K.;Baeg, Jin-Ook;Seok, Sang-Il
    • Bulletin of the Korean Chemical Society
    • /
    • 제26권11호
    • /
    • pp.1803-1806
    • /
    • 2005
  • Formation of octahedral shaped PbSe quantum dots at higher synthesis temperature is being reported in this paper. The synthesis includes the reaction between lead oleate and trioctylphosphine selenide under inert gas conditions to produce PbSe. TEM, SEM, XRD and EDS were used to characterize the samples. The SEM exhibited the formation of spherical shaped nanocrystals at temperature below 140 ${^{\circ}C}$ and octahedral shaped nanoparticles at higher temperatures. Moreover, the TEM also showed the well resolved (111) lattice fringes proving that the nanocrystals were crystalline in nature. Synthesis of highly pure PbSe nanocrystals was another interesting aspect of this research.

Hg(0) Removal Using Se(0)-doped Montmorillonite from Selenite(IV)

  • Lee, Joo-Youp;Kim, Yong Jin
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권12호
    • /
    • pp.3767-3770
    • /
    • 2013
  • Potassium methylselenite ($KSeO_2(OCH_3)$) was reduced to elemental selenium, Se(0), and then doped onto montmorillonite K 10 (MK10) clay to examine the interaction between elemental mercury (Hg(0)) vapor and Se(0) in an effort to understand the possible heterogeneous reaction of Hg(0) vapor and Se(0) solid. The clay was used as a cost-effective support material for uniform dispersion of Se(0). The Se(0)-doped MK10 showed an excellent reaction performance with Hg(0) under an inert nitrogen gas at 70 and $140^{\circ}C$ in our lab-scale fixed-bed system. However, the precursor, $KSeO_2(OCH_3)$-doped MK10 showed a negligible reaction performance with Hg(0), suggesting that the oxidation state of selenium plays a key role in the reaction of Hg(0) vapor and selenium compounds.

액체로켓엔진 가스발생기 혼합비 안정기의 특성 연구 (The Characteristic Study on Mixture Ratio Stabilizer for Gas Generator of LRE(Liquid Rocket Engine))

  • 정태규;이중엽;한상엽;권세진
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.509-512
    • /
    • 2006
  • The propellant mixture ratio of gas generator changes when thrust control valve operate to change LRE thrust level. The mixture ratio change of gas generator result in gas temperature change and failure of turbine blade or deterioration of LRE specific impulse. The mixture ratio stabilizer has been developed to maintain propellant mixture ratio of gas generator. This article deals with design and static/dynamic characteristic of stabilizer. Also gas generator system simulation test has shown that the stabilizer can maintain propellant mixture ratio effectively within tolerable range.

  • PDF

Design of Semiconducting Gas Sensors for Room-Temperature Operation

  • Song, Young Geun;Kim, Gwang Su;Ju, Byeong-Kwon;Kang, Chong-Yun
    • 센서학회지
    • /
    • 제29권1호
    • /
    • pp.1-6
    • /
    • 2020
  • Gas sensors that operate at room temperature have been extensively studied because of sensor stability, lift time, and power consumption. To design effective room-temperature gas sensors, various nanostructures, such as nanoparticles, nanotubes, nanodomes, or nanofibers, are utilized because of their large-surface-to-volume ratio and unique surface properties. In addition, two-dimensional materials, including MoS2, SnS2, WS2, and MoSe, and ultraviolet-activated methods have been studied to develop ideal room-temperature gas sensors. Herein, a brief overview of state-of-the-art research on room-temperature gas sensors and their sensing properties, including nanostructured materials, two-dimensional materials, the ultraviolet-activated method, and ionic-activated gas sensors, is provided.

Performance Analysis of Gas Turbine for Large-Scale IGCC Power Plant

  • Joo, Yong-Jin;Kim, Mi-Yeong;Park, Se-Ik;Seo, Dong-Kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.415-419
    • /
    • 2016
  • As the need for clean coal technology has grown, so has the global research and development efforts into integrated gasification combined cycle (IGCC) plants. An IGCC plant couples a gas turbine to a gasification block. Various technical and economic problems exist in designing such a system. One such problem is the difficulty in realizing economies of scale because the single-train flow capacity of commercial IGCC synthetic gas turbine plants is limited; the capacity does not exceed a net power rating of 300 MW. To address this problem, this study modeled and simulated a synthetic gas turbine with the goal of evaluating the feasibility of a 500 MW or larger IGCC plant. First, a gas turbine with the best output and efficiency was chosen for use with natural gas. The turbine was modeled using GateCycle (a simulation tool), and the integrity of the model validated by comparing the result to the design value. Next, off-design modeling was carried out for a gas turbine with synthetic gas based on its on-design model, and the result was compared with the study result of the gas turbine manufacturer. The simulation confirmed that it is possible to create a large capacity IGCC plant by undertaking the remodeling of a gas turbine designed to use natural gas into one suitable for synthetic gas.