DOI QR코드

DOI QR Code

Design of Semiconducting Gas Sensors for Room-Temperature Operation

  • Song, Young Geun (Display and Nanosystem Laboratory, School of Electronic Engineering, Korea University) ;
  • Kim, Gwang Su (Center for Electronic Materials, Korea Institute of Science and Technology (KIST)) ;
  • Ju, Byeong-Kwon (Display and Nanosystem Laboratory, School of Electronic Engineering, Korea University) ;
  • Kang, Chong-Yun (Center for Electronic Materials, Korea Institute of Science and Technology (KIST))
  • Received : 2019.11.04
  • Accepted : 2020.01.30
  • Published : 2020.01.31

Abstract

Gas sensors that operate at room temperature have been extensively studied because of sensor stability, lift time, and power consumption. To design effective room-temperature gas sensors, various nanostructures, such as nanoparticles, nanotubes, nanodomes, or nanofibers, are utilized because of their large-surface-to-volume ratio and unique surface properties. In addition, two-dimensional materials, including MoS2, SnS2, WS2, and MoSe, and ultraviolet-activated methods have been studied to develop ideal room-temperature gas sensors. Herein, a brief overview of state-of-the-art research on room-temperature gas sensors and their sensing properties, including nanostructured materials, two-dimensional materials, the ultraviolet-activated method, and ionic-activated gas sensors, is provided.

Keywords

References

  1. L. Atzori, A. Iera, and G. Morabito, "The internet of things: A survey", Comput. Netw., Vol. 54, No. 15, pp. 2787-2805, 2010. https://doi.org/10.1016/j.comnet.2010.05.010
  2. R. A. Potyrailo, "Multivariable sensors for ubiquitous monitoring of gases in the era of internet of things and industrial internet", Chem. Rev., Vol. 116, No. 19, pp. 11877-11923, 2016. https://doi.org/10.1021/acs.chemrev.6b00187
  3. X. Liu, S. Cheng, H. Liu, S. Hu, D. Zhang, and H. Ning, "A survey on gas sensing technology", Sensors, Vol. 12, No. 7, pp. 9635-9665, 2012. https://doi.org/10.3390/s120709635
  4. S. Lakkis, R. Younes, Y. Alayli, and M. Sawan, "Review of recent trends in gas sensing technologies and their miniaturization potential", Sens. Rev., Vol. 34, No. 1, pp. 24-35, 2014. https://doi.org/10.1108/SR-11-2012-724
  5. N. Minh Triet, L. Thai Duy, B.-U. Hwang, A. Hanif, S. Siddiqui, K.-H. Park, C.-Y. Cho, and N.-E. Lee, "High-Performance Schottky Diode Gas Sensor Based on the Heterojunction of Three-Dimensional Nanohybrids of Reduced Graphene Oxide-Vertical ZnO Nanorods on an AlGaN/GaN Layer", ACS Appl. Mater. Interfaces, Vol. 9, No. 36, pp. 30722-30732, 2017. https://doi.org/10.1021/acsami.7b06461
  6. H. Nazemi, A. Joseph, J. Park, and A. Emadi, "Advanced micro-and nano-gas sensor technology: A review", Sensors, Vol. 19, No. 6, pp. 1285, 2019. https://doi.org/10.3390/s19061285
  7. S. Capone, A. Forleo, L. Francioso, R. Rella, P. Siciliano, J. Spadavecchia, D. Presicce, and A. Taurino, "Solid state gas sensors: state of the art and future activities", J. Optoelectron. Adv. Mater., Vol. 5, No. 5, pp. 1335-1348, 2003.
  8. C. Wang, L. Yin, L. Zhang, D. Xiang, and R. Gao, "Metal oxide gas sensors: sensitivity and influencing factors", Sensors, Vol. 10, No. 3, pp. 2088-2106, 2010. https://doi.org/10.3390/s100302088
  9. S. J. Patil, A. V. Patil, C. G. Dighavkar, K. S. Thakare, R. Y. Borase, S. J. Nandre, N. G. Deshpande, and R. R. Ahire, "Semiconductor metal oxide compounds based gas sensors: A literature review", Front. Mater. Sci., Vol. 9, No. 1, pp. 14-37, 2015. https://doi.org/10.1007/s11706-015-0279-7
  10. K. Lee, Y.-S. Shim, Y. Song, S. Han, Y.-S. Lee, and C.-Y. Kang, "Highly sensitive sensors based on metal-oxide nanocolumns for fire detection", Sensors, Vol. 17, No. 2, pp. 303, 2017. https://doi.org/10.3390/s17020303
  11. Z. Yuan, R. Li, F. Meng, J. Zhang, K. Zuo, and E. Han, "Approaches to Enhancing Gas Sensing Properties: A Review", Sensors, Vol. 19, No. 7, pp. 1495, 2019. https://doi.org/10.3390/s19071495
  12. T. Rault, A. Bouabdallah, and Y. Challal, "Energy efficiency in wireless sensor networks: A top-down survey", Comput. Netw., Vol. 67, No.4, pp. 104-122, 2014. https://doi.org/10.1016/j.comnet.2014.03.027
  13. J. Zhang, X. Liu, G. Neri, and N. Pinna, "Nanostructured materials for room-temperature gas sensors", Adv. Mater., Vol. 28, No. 5, pp. 795-831, 2016. https://doi.org/10.1002/adma.201503825
  14. W. Choi, N. Choudhary, G. H. Han, J. Park, D. Akinwande, and Y. H. Lee, "Recent development of two-dimensional transition metal dichalcogenides and their applications", Mater. Today, Vol. 20, No. 3, pp. 116-130, 2017. https://doi.org/10.1016/j.mattod.2016.10.002
  15. N. Yamazoe, G. Sakai, and K. Shimanoe, "Oxide semiconductor gas sensors", Catal. Surv. Asia, Vol. 7, No. 1, pp. 63-75, 2003. https://doi.org/10.1023/A:1023436725457
  16. M. Batzill, "Surface science studies of gas sensing materials: $SnO_{2}$", Sensors, Vol. 6, No. 10, pp. 1345-1366, 2006. https://doi.org/10.3390/s6101345
  17. N. Barsan, and U. Weimar, "Conduction model of metal oxide gas sensors", J. Electroceram., Vol. 7, No. 3, pp. 143-167, 2001. https://doi.org/10.1023/A:1014405811371
  18. Y. G. Song, J. Y. Park, J. M. Suh, Y.-S. Shim, S. Y. Yi, H. W. Jang, S. Kim, J. M. Yuk, B.-K. Ju, and C.-Y. Kang, "Heterojunction Based on Rh-Decorated $WO_{3}$ Nanorods for Morphological Change and Gas Sensor Application Using the Transition Effect", Chem. Mater., Vol. 31, No. 1, pp. 207-215, 2018. https://doi.org/10.1021/acs.chemmater.8b04181
  19. S. Y. Yi, Y. G. Song, J. Y. Park, J. M. Suh, G. S. Kim, Y.-S. Shim, J. M. Yuk, S. Kim, H. W. Jang, and B.-K. Ju, "Morphological Evolution Induced through a Heterojunction of W-Decorated NiO Nanoigloos: Synergistic Effect on High-Performance Gas Sensors", ACS Appl. Mater. Interfaces, Vol. 11, No. 7, pp. 7529-7538, 2019. https://doi.org/10.1021/acsami.8b18678
  20. S. Bianchi, E. Comini, M. Ferroni, G. Faglia, A. Vomiero, and G. Sberveglieri, "Indium oxide quasi-monodimensional low temperature gas sensor", Sens. Actuators B, Vol. 118, No. 1-2, pp. 204-207, 2006. https://doi.org/10.1016/j.snb.2006.04.023
  21. X. Pan, X. Zhao, J. Chen, A. Bermak, and Z. Fan, "A fastresponse/recovery ZnO hierarchical nanostructure based gas sensor with ultra-high room-temperature output response", Sens. Actuators B, Vol. 206, pp. 764-771, 2015. https://doi.org/10.1016/j.snb.2014.08.089
  22. X. Tang, A. Du, and L. Kou, "Gas sensing and capturing based on two-dimensional layered materials: Overview from theoretical perspective", Wiley Interdiscip. Rev. Comput. Mol. Sci., Vol. 8, No. 4, pp. e1361, 2018.
  23. H. Li, Z. Yin, Q. He, H. Li, X. Huang, G. Lu, D. W. H. Fam, A. I. Y. Tok, Q. Zhang, and H. Zhang, "Fabrication of single-and multilayer $MoS_{2}$ film-based field-effect transistors for sensing NO at room temperature", Small, Vol. 8, No. 1, pp. 63-67, 2012. https://doi.org/10.1002/smll.201101016
  24. K. C. Kwon, J. M. Suh, T. H. Lee, K. S. Choi, K. Hong, Y. G. Song, Y.-S. Shim, M. Shokouhimehr, C.-Y. Kang, and S. Y. Kim, "$SnS_{2}$ Nanograins on Porous $SiO_{2}$ Nanorods Template for Highly Sensitive $NO_{2}$ Sensor at Room Temperature with Excellent Recovery", ACS Sensors, Vol. 4, No. 3, pp. 678-686, 2019. https://doi.org/10.1021/acssensors.8b01526
  25. E. Espid, and F. Taghipour, "UV-LED photo-activated chemical gas sensors: A review", Crit. Rev. Solid State Mater. Sci., Vol. 42, No. 5, pp. 416-432, 2017. https://doi.org/10.1080/10408436.2016.1226161
  26. S.-W. Fan, A. K. Srivastava, and V. P. Dravid, "UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO", Appl. Phys. Lett., Vol. 95, No. 14, pp. 142106, 2009. https://doi.org/10.1063/1.3243458
  27. R. Kumar, N. Goel, and M. Kumar, "UV-activated MoS2 based fast and reversible $NO_{2}$ sensor at room temperature", ACS Sensors, Vol. 2, No. 11, pp. 1744-1752, 2017. https://doi.org/10.1021/acssensors.7b00731
  28. S. Park, S. An, Y. Mun, and C. Lee, "UV-enhanced $NO_{2}$ gas sensing properties of $SnO_{2}$-core/ZnO-shell nanowires at room temperature", ACS Appl. Mater. Interfaces, Vol. 5, No. 10, pp. 4285-4292, 2013. https://doi.org/10.1021/am400500a
  29. Y. G. Song, Y. S. Shim, J. M. Suh, M. S. Noh, G. S. Kim, K. S. Choi, B. Jeong, S. Kim, H. W. Jang, and B. K. Ju, "Ionic-Activated Chemiresistive Gas Sensors for Room-Temperature Operation", Small, Vol. 15, No., pp. 1902065-1902073, 2019. https://doi.org/10.1002/smll.201902065
  30. X. Song, Q. Qi, T. Zhang, C. Wang, "A humidity sensor based on KCl-doped $SnO_{2}$ nanofibers", Sens. Actuators B Chem., Vol. 138, No. 1, pp. 368-373, 2009. https://doi.org/10.1016/j.snb.2009.02.027