• 제목/요약/키워드: Se based materials

검색결과 442건 처리시간 0.03초

Phase Change Characteristics of Sb-Based Phase Change Materials

  • Park, Sung-Jin;Kim, In-Soo;Kim, Sang-Kyun;Choi, Se-Young
    • 한국재료학회지
    • /
    • 제18권2호
    • /
    • pp.61-64
    • /
    • 2008
  • Electrical optical switching and structural transformation of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ were studied to investigate the phase change characteristics for PRAM application. Sb-based materials were deposited by a RF magnetron co-sputtering system and the phase change characteristics were analyzed using an X-ray diffractometer (XRD), a static tester and a four-point probe. Doping Ge, Se or Si atoms reinforced the amorphous stability of the Sb-based materials, which affected the switching characteristics. The crystallization temperature of the Sb-based materials increased as the concentration of the Ge, Se or Si increased. The minimum time of $Ge_{15}Sb_{85}$, $Sb_{65}Se_{35}$ and N2.0 sccm doped $Sb_{83}Si_{17}$ for crystallization was 120, 50 and 90 ns at 12 mW, respectively. $Sb_{65}Se_{35}$ was crystallized at $170^{\circ}C$. In addition, the difference in the sheet resistances between amorphous and crystalline states was higher than $10^4{\Omega}/{\gamma}$.

RGB Light Emissions from ZnSe Based Nanocrystals: ZnSe, ZnSe:Cu, and ZnSe:Mn

  • Song, Byungkwan;Heo, Jeongho;Hwang, Cheong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • 제35권12호
    • /
    • pp.3601-3608
    • /
    • 2014
  • RGB light emitting ZnSe based nanocrystals: ZnSe (blue), ZnSe:Cu (green) and ZnSe:Mn (red) were synthesized by capping the surface of the nanocrystals with oleic acid. The obtained nanocrystal powders were characterized by using XRD, HR-TEM, ICP-AES, FT-IR, and FT-Raman spectroscopies. The optical properties were also measured by UV/Vis and photoluminescence (PL) spectroscopies. The PL spectra showed broad emission peaks at 471 nm (ZnSe), 530 nm (ZnSe:Cu) and 665 nm (ZnSe:Mn), with relative PL efficiencies in the range of 0.7% to 5.1% compared to a reference organic dye standard. The measured average particle sizes from the HR-TEM images for those three nanocrystals were 4.5 nm on average, which were also supported well by the Debye-Scherrer calculations. The elemental compositions of the ZnSe based nanocrystals were determined by ICP-AES analyses. Finally, the drawn CIE diagram showed the color coordinates of (0.15, 0.16) for ZnSe, (0.22, 0.57) for ZnSe:Cu, and (0.62, 0.35) for ZnSe:Mn respectively, which were fairly well matched to that of the RGB color standards.

Deformation of Amorphous GeSe2 Film under Uniaxial Pressure Applied at Elevated Temperatures

  • Jin, Byeong Kyou;Lee, Jun Ho;Yi, Jeong Han;Lee, Woo Hyung;Shin, Sang Yeol;Choi, Yong Gyu
    • 한국세라믹학회지
    • /
    • 제52권2호
    • /
    • pp.108-113
    • /
    • 2015
  • In an effort to evaluate the practicability of an imprinting technique for amorphous chalcogenide film in Ge-based compositions, we investigate the deformation behavior of the surface of amorphous $GeSe_2$ film deposited via a thermal evaporation route according to varying static loads applied at elevated temperatures. We observe that, under these static loading conditions, crystallization tends to occur on its surface relatively more easily than in As-based $As_2Se_3$ films. As for the present $GeSe_2$ film, higher processing temperatures are required in order to make its surface reflect the given stamp patterns well; however, in this case, its surface becomes partially crystallized in the monoclinic $GeSe_2$ phase. The increased vulnerability of this amorphous $GeSe_2$ film toward surface crystallization under static loading, when compared with the $As_2Se_3$ counterpart, is explained in terms of the topological aspects of its amorphous structure.

화학기상증착법을 통한 고품질 단층 MoSe2합성 및 반데르발스 수직이종 접합 구조 기반 고성능 트랜지스터 제작 (Chemical Vapor Deposition of High-Quality MoSe2 Monolayer and Its Application to van der Waals Heterostructure-Based High-Performance Field-Effect Transistors)

  • 임시헌;김선우;최선연;김현호
    • 접착 및 계면
    • /
    • 제24권1호
    • /
    • pp.36-40
    • /
    • 2023
  • 반데르발스 물질이란 층간 결합이 약한 반데르발스 결합으로 이루어진 이차원 층상구조를 지닌 물질을 의미하며, 이러한 반데르발스 이차원 소재를 이용한 이종접합 구조 연구는 그래핀이 발견된 이후 꾸준히 연구되고 있다. 본 논문에서는 대기압 화학기상증착법을 통해 성장된 단층 단결정 MoSe2를 기반으로하는 반데르발스 이종접합 트랜지스터 소자에 대해 보고한다. 최적화된 공정조건에서 성장된 MoSe2는 원자수준의 결함이 존재하지 않는 것을 밝혔으며, 이를 이용한 트랜지스터 소자 또한 우수한 특성을 보인다는 것을 밝혀내었다.

Ag Nanocrystal이 적용된 Ge0.5Se0.5-based ReRAM 소자의 Uniformity 특성 향상에 대한 연구 (Improved Uniformity of Resistive Switching Characteristics in Ge0.5Se0.5-based ReRAM Device Using the Ag Nanocrystal)

  • 정홍배;김장한;남기현
    • 한국전기전자재료학회논문지
    • /
    • 제27권8호
    • /
    • pp.491-496
    • /
    • 2014
  • The resistive switching characteristics of resistive random access memory (ReRAM) based on amorphous $Ge_{0.5}Se_{0.5}$ thin films have been demonstrated by using Ti/Ag nanocrystals/$Ge_{0.5}Se_{0.5}$/Pt structure. Ag nanocrystals (Ag NCs) were spread on the amorphous $Ge_{0.5}Se_{0.5}$ thin film and they played the role of metal ions source. As a result, comparing the conventional Ag/$Ge_{0.5}Se_{0.5}$/Pt structure, this Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt ReRAM device exhibits the highly uniform bipolar resistive switching (BRS) characteristics, such as the operating voltages, and the resistance values. At the same time, a stable DC endurance(> 100 cycles), and the excellent data retention (> $10^4$ sec) properties were found from the Ti/Ag NCs/$Ge_{0.5}Se_{0.5}$/Pt structured ReRAM device.

In과 Ga가 미포함 된 Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS) 박막형 태양전지 개발 현황 (Development of Kesterite Cu2ZnSn(S1-x,Sex)4 (CZTSS)-Based Thin Film Solar Cells with In and Ga Free Absorber Materials)

  • 신승욱;한준희;강명길;윤재호;이정용;김진혁
    • 한국재료학회지
    • /
    • 제22권5호
    • /
    • pp.259-273
    • /
    • 2012
  • Chalcogenide-based semiconductors, such as $CuInSe_2$, $CuGaSe_2$, Cu(In,Ga)$Se_2$ (CIGS), and CdTe have attracted considerable interest as efficient materials in thin film solar cells (TFSCs). Currently, CIGS and CdTe TFSCs have demonstrated the highest power conversion efficiency (PCE) of over 11% in module production. However, commercialized CIGS and CdTe TFSCs have some limitations due to the scarcity of In, Ga, and Te and the environmental issues associated with Cd and Se. Recently, kesterite CZTS, which is one of the In- and Ga- free absorber materials, has been attracted considerable attention as a new candidate for use as an absorber material in thin film solar cells. The CZTS-based absorber material has outstanding characteristics such as band gap energy of 1.0 eV to 1.5 eV, high absorption coefficient on the order of $10^4cm^{-1}$, and high theoretical conversion efficiency of 32.2% in thin film solar cells. Despite these promising characteristics, research into CZTS-based thin film solar cells is still incomprehensive and related reports are quite few compared to those for CIGS thin film solar cells, which show high efficiency of over 20%. The recent development of kesterite-based CZTS thin film solar cells is summarized in this work. The new challenges for enhanced performance in CZTS thin films are examined and prospective issues are addressed as well.

Synthesis of $Cu_2ZnSnSe_4$ compound by solid state reaction using elemental powders

  • Wibowo, Rachmat Adhi;Alfaruqi, Muhammad H.;Jung, Woon-Hwa;Kim, Kyoo-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2009년도 춘계학술대회 논문집
    • /
    • pp.134-137
    • /
    • 2009
  • Commercially available elemental powders of Cu, Zn, Sn and Se were employed for crystallizing a stannite-type $Cu_2ZnSnSe_4$ compound by means of solid state reaction. $Cu_2ZnSnSe_4$ reaction chemistry was also modeled based on differential-thermal analysis and X-ray powder diffraction results. It was observed that Se tends to react preferably with Cu to form CuSe and $CuSe_2$ phases at low reaction temperature. The formation of $Cu_5Zn_8$ intermetallic phase was found to be the intermediate reaction path for the binary ZnSe formation. A solid state reaction at $320^{\circ}C$ reacted elemental powderst obinary selenides of CuSe, ZnSe and SnSe completely. The crystallization of $Cu_2ZnSnSe_4$ was was detected to begin at $300^{\circ}C$ and its weight fraction increased with an increase of reaction temperature, which most probably formed from the reaction between $Cu_2SnSe_3$ and ZnSe.

  • PDF