• Title/Summary/Keyword: Sculptured surface

Search Result 113, Processing Time 0.052 seconds

An Experimental Study for Basic Performance Evaluation According to the Glossing Surface Design Concrete (문양콘크리트의 광택화를 위한 기초적 성능평가에 관한 실험적 연구)

  • 김재은;김우상;조상영;김성식;임남기;정상진
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2004.05a
    • /
    • pp.109-112
    • /
    • 2004
  • Contemporary, architecture calls for a wide range of surface textures and treatments. A surface compatible with the architecture's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose, of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost, through this study, we have figured out the best mix proportion for durability and glossability of glossing exposure concrete.

  • PDF

A study on automated process for surface finishing of die and mould using ultrasonic vibration (초음파 진동을 이용한 금형사상의 자동화 공정 연구)

  • Pyoug Y. S.;Kwon H. H.;Azuma N.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2002.11a
    • /
    • pp.79-87
    • /
    • 2002
  • An attempt to automate the surface finishing process of the die and mould has been carried out. An UMB(Ultrasonic Micro Burnishing) equipment which brought the micro plastic cold deformation to the 3D sculptured surface of mold and dies by ultrasonic vibration and static load, was developed and installed at the head stock of a vertical machining center. To be satisfied with the required surface roughness and hardness, the DB based program was also developed and applied. This equipment composes of UMB equipement, CNC vertical machining center, CAD/CAM system and the DB based program fer optimal condition. UMB processing effect was obtained from initial value Ral.25 and Hk337 to Ra0.085 and Hk521 and similar result was shown in industrial mould application.

  • PDF

An Experimental Study on method of Design-Concrete & Development of Design-Form used Building Wall (건축벽체용 문양거푸집 개발을 통한 의장콘크리트 공법 연구)

  • 임현준;김종원;조상영;김우재;김성식;정상진
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2002.10a
    • /
    • pp.501-506
    • /
    • 2002
  • Contemporary architecture calls for a wide range of surface textures and treatments. A surface compatible with the architect's design may vary from a glass-smooth finish to one requiring special sculptured ornamentation. These surfaces require many different types of form sheathing and lining. The purpose of study development new design form and made elaborateness shape. Easy to used in field that architecture finish material not used expect effective reduce of working hours, personnel expenses, architecture finish material, cost. After this, building wall apply a variety shape in concrete surface

  • PDF

Generation of 5-axis NC Data for Machining Turbine Blades by Controlling the Heel Angle (Heel angle 조정에 의한 터빈 블레이드의 5축 NC가공 데이터 생성)

  • 이철수;박광렬
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.110-120
    • /
    • 1999
  • In general, turbine blades are usually machined on 5-axis NC machine. The 5-axis machining of sculptured surface offers many advantages over 3-axis machining including the faster material-removal rates and an improved surface finish. But it is difficult and time-consuming to generated interference-free 5-axis tool path. This paper describes research on the algorithm for generation of an interference-free 5-axis NC data for machining turbine blades. The approach, using the section profile derived from the intersection of cutting planes with a triangulated-surface approximation, includes (1) CL-data generation by detecting an interference-free heel angle (2) the calculation method for finding a adaptive feed-rate value, and (3) the inverse kinematics depending on the structure of 5-axis machine.

  • PDF

Development of Simulation System Curved Surface Rendering using a Ball-end Milling (볼 엔드밀을 사용한 곡면가공 시뮬레이션 시스템 개발)

  • 박홍석;박준학;이재종
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.125-128
    • /
    • 1997
  • They use a Ball End-mill in order to manufacturing sculptured surface when making metal mold, mold, cars and aircraft. In the work of a Ball End-mill case, customers do not often satisfied with manufacturing precision. Eventually, they have to re-work for the purpose of meeting manufacturing precision. There are resulted in lots of loss, whereby, in terms of both time and costs. The reasons of tolerance reducing manufacturing precision are thermal strain, the surface is damaged because of increasing cutting force and tool wear, tool deflection etc.. We focus on, however, manufacturing precision caused due to deflection of tool.

  • PDF

Cutting Force Prediction of Slanted Surface Ball-End Milling Using Cutter Contact Area (절삭영역 해석을 통한 경사면 가공에서의 볼엔드밀 절삭력 예측)

  • 김규만;조필주;황인길;주종남
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.3
    • /
    • pp.161-167
    • /
    • 1998
  • Cutting forces in ball-end milling of slanted surfaces are calculated. The cutting area is determined from the Z-map of the surface geometry and current cutter location. The obtained cutting area is projected onto the cutter plane normal to the Z-axis and compared with cutting edge element location. Cutting force is calculated by integration of elemental cutting forces of engaged cutting edge elements. Experiments with various slanted angles were performed to verify the proposed cutting force estimation model. It is shown that the proposed method predicts cutting force effectively for any geometry including sculptured surfaces with cusp marks and surfaces with pockets and holes.

  • PDF

Analysis of Machined Surfaces by Ball-end Milling using the Ridge Method (능선 궤적법을 이용한 볼엔드밀 가공면 해석)

  • 정태성;남성호;박진호;양민양
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.51-60
    • /
    • 2004
  • Ball-end milling is one of the most common manufacturing processes for the parts with sculptured surface. However, the conventional roughness model is not suitable for the evaluation of surface texture and roughness under highly efficient machining conditions. Therefore, a different approach is needed for the accurate evaluation of machined surface. In this study, a new method, named ‘Ridge method’, is proposed for the effective prediction of the geometrical roughness and the surface topology in ball-end milling. Theoretical analysis of a machined surface texture was performed considering the actual trochoidal trajectories of cutting edge. The characteristic lines of cut remainder are defined as three-types of ‘Ridges’ and their mathematical equations are derived from the surface generation mechanism of ball-end milling process. The predicted results are compared with the results of conventional method. The agreement between the results predicted by the proposed method and the values calculated by the simulation method shows that the analytic equations presented in this paper are useful for evaluating a geometrical surface roughness of ball -end milling process.

Machinability Evaluation with Cutting Direction in High Speed Machining of Free Form Surface through Ball End Milling (볼 엔드밀을 통한 자유곡면의 고속가공에서 절삭방향에 따른 가공성 평가)

  • Kim, Gyeong-Gyun;Gang, Myeong-Chang;Lee, Deuk-U;Kim, Jeong-Seok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.84-89
    • /
    • 2001
  • In recent years, there is increasing demand of esthetic design and complex function in aerospace, automobile and die/mold industry, which brings into limelight high-precision, high-efficient machining of sculptured surface. This paper deals with the establishment of the optimal tool path on free form surface in high speed ball end milling. Ball end milling is widely used for free form surface die and mold. In this machining, the cutting direction was changed with tool path. The cutting characteristics, such as cutting force and surface form are varied according to the variation of cutting directions. In this paper, the optimal tool path with down cutting in free form surface cutting is suggested.

  • PDF

Digitization of Unknown Sculptured Surface Using a Scanning Probe (스캐닝 프로브를 이용한 미지의 자유곡면 점군 획득에 관한 연구)

  • 권기복;김재현;이정근;박정환;고태조
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.4
    • /
    • pp.57-63
    • /
    • 2004
  • This paper describes a method for digitizing the compound surfaces which are comprised of several unknown feature shapes such as base surface, and draft wall. From the reverse engineering's point of view, the main step is to digitize or gather three-dimensional points on an object rapidly and precisely. As well known, the non-contact digitizing apparatus using a laser or structured light can rapidly obtain a great bulk of digitized points, while the touch or scanning probe gives higher accuracy by directly contacting its stylus onto the part surface. By combining those two methods, unknown features can be digitized efficiently. The paper proposes a digitizing methodology using the approximated surface model obtained from laser-scanned data, followed by the use of a scanning probe. Each surface boundary curve and the confining area is investigated to select the most suitable digitizing path topology, which is similar to generating NC tool-paths. The methodology was tested with a simple physical model whose shape is comprised of a base surface, draft walls and cavity volumes.

Five-axis CL Data Generation by Considering Tool Swept Surface Model in Face Milling of Sculptured Surface (공구이동궤적 모델을 이용한 5축 페이스밀링 가공데이터 생성)

  • 이정근;박정환
    • Korean Journal of Computational Design and Engineering
    • /
    • v.9 no.1
    • /
    • pp.35-43
    • /
    • 2004
  • It is well known that the five-axis machining has advantages of tool accessibility and machined surface quality when compared with conventional three-axis machining. Traditional researches on the five-axis tool-path generation have addressed interferences such as cutter gouging, collision, machine kinematics and optimization of a CL(cutter location) or a cutter position. In the paper it is presented that optimal CL data for a face-milling cutter moving on a tool-path are obtained by incorporating TSS(tool swept surface) model. The TSS model from current CL position to the next CL position is constructed based on machine kinematics as well as cutter geometry, with which the deviation from the design surface can be computed. Then the next CC(cutter-contact) point should be adjusted such that the deviation conforms to given machining tolerance value. The proposed algorithm was implemented and applied to a marine propeller machining, which proved effective from a quantitative point of view. In addition, the algorithm using the TSS can also be applied to avoid cutter convex interferences in general three-axis NC machining.