• 제목/요약/키워드: Screw plate load test

검색결과 10건 처리시간 0.023초

새롭게 개발된 스크류재하시험장치를 이용한 지반특성 파악 (Evaluation of Ground Characteristic Using the New Developed Screw Plate Load Test Device)

  • 이남우;황웅기;최용규;김태형
    • 한국지반공학회논문집
    • /
    • 제27권3호
    • /
    • pp.5-17
    • /
    • 2011
  • 실내시험의 경우 샘플링으로 인한 시료의 교란은 종종 지반의 공학적 특성을 추정하는데 상당한 오차를 발생시키기 때문에 현장지반의 거동을 분석하는데 있어 부적절한 결과를 초래한다. 따라서 본 연구에서는 원위치시험법 중 하나인 스크류재하시험을 개발하였다. 그 이유는 신뢰성 있는 공학적 파라메터를 산정하기 위해서는 원위치시험법을 채택하는 것이 유리하기 때문이다. 스크류재하시험은 나선형의 오거 재하판을 지반 속에 관입하여 재하시험을 하는 평판 재하시험의 개량된 시험이다. 본 연구를 통해 스크류시험장치에 대한 구조와 특성을 자세히 소개하고 실내시험 결과를 통해 장치에 대한 신뢰성을 검증하였다.

지반의 교란을 최소화 한 원위치시험법 개발 및 적용 : 스크류재하시험 (Low-Soil Disturbance In-Situ Test Method Development and Its Application : Screw Plate Loading Test)

  • 이용수;황웅기;최용규;김태형
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.977-986
    • /
    • 2009
  • Sampling disturbance can introduce considerable errors in the laboratory estimation of geotechnical properties of soils, and the results obtained from sophisticated sampling and careful laboratory testing are not matching with field behavior. Therefore, it is advantage to adopt in-situ testing techniques for the estimation of geotechnical parameters. Therefore, Screw plate loading test, one of new field test technologies, has been investigated in this study. This test can be utilized to find out important properties of soils such as load-displacement, elastic modulus, and shear strength. The screw plate loading test modified from the plate loading test is an experiment underneath ground by inserting a spiral type of auger screw. The structure and characteristics of the screw plate loading test device was examined in detail. In addition, The new screw plate loading test device was manufactured to refer the previous studies. The reliability of developing screw plate loading test was examined through the analysis of the laboratory test.

  • PDF

Analytical investigation of thin steel plate shear walls with screwed infill plate

  • Vatansever, Cuneyt;Berman, Jeffrey W.
    • Steel and Composite Structures
    • /
    • 제19권5호
    • /
    • pp.1145-1165
    • /
    • 2015
  • A behavior model for screw connections is developed to provide a better representation of the nonlinear response of thin steel plate shear walls (TSPSWs) with infill plates attached to the boundary frame members via self-drilling screws. This analytical representation is based on the load-bearing deformation relationship between the infill plate and the screw threads. The model can be easily implemented in strip models of TSPSWs where the tension field action of the infill plates is represented by a series of parallel discrete tension-only strips. Previously reported experimental results from tests of two different TSPSWs are used to provide experimental validation of the modeling approach. The beam-to-column connection behavior was also included in the analyses using a four parameter rotational spring model that was calibrated to a test of an identical frame as used for the TSPSW specimens but without the infill plates. The complete TSPSW models consisting of strips representing the infill plates, zero length elements representing the load-bearing deformation response of the screw connection at each end of the strips and the four parameter spring model at each beam-to-column connection are shown to have good agreement with the experimental results. The resulting models should enable design and analysis of TSPSWs for both new construction and retrofit of existing buildings.

Changes In Mechanical Strength of Compression HIP Screws in Relation to Design Variations - A Biomechanical Analysis

  • Moon S. J.;Lee H. S.;Jun S. C.;Jung T. G.;Ahn S. Y.;Lee H.;Lee S. J.
    • 대한의용생체공학회:의공학회지
    • /
    • 제26권2호
    • /
    • pp.123-127
    • /
    • 2005
  • Compression Hip Screw (CHS) is one of the most widely-used prostheses for the treatment of intertrochanteric fractures because of its strong fixation capability. Fractures at the neck and screw holes are frequently noted as some of its clinical drawbacks, which warrant more in-depth biomechanical analysis on its design variables. The purpose of this study was to evaluate changes in the strength with respect to the changes in design such as the plate thickness and the number of screw holes. Both mechanical test and FEM analysis were used to systematically investigate the sensitivities of the above-mentioned design variables. For the first part of the mechanical test, CHS (n=20) were tested until failure. The CHS specimens were classified into four groups: Group Ⅰ was the control group with the neck thickness of 6-㎜ and 5 screw holes on the side plate, Group Ⅱ 6-㎜ thick and 8 holes, Group Ⅲ 7.5-㎜ thick and 5 holes, and Group Ⅳ 7.5-㎜ thick and 8 holes. Then, the fatigue test was done for each group by imparting 50% and 75% of the failure loads for one million cycles. For the FEM analysis, FE models were made for each group. Appropriate loading and boundary conditions were applied based on the failure test results. Stresses were assessed. Mechanical test results indicated that the failure strength increased dramatically by 80% with thicker plate. However, the strength remained unchanged or decreased slightly despite the increase in number of holes. These results indicated the higher sensitivity of plate thickness to the implant strength. No fatigue failures were observed which suggested the implant could withstand at least one million cycles of fatigue load regardless of the design changes. Our FEM results also supported the above results by showing a similar trend in stress as those of mechanical test. In summary, our biomechanical results were able to show that plate thickness could be a more important variable in design for reinforcing the strength of CHS than the number of screw holes.

생체 역학적 분석에 의한 Compression Hip Screw의 디자인 요소에 대한 평가 (Mechanical Response of Changes in Design of Compression Hip Screws with Biomechanical Analysis)

  • 문수정;이희성;권순영;이성재;안세영;이훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2004년도 추계학술대회 논문집
    • /
    • pp.1172-1175
    • /
    • 2004
  • At present, CHS(Compression Hip Screw) is one of the best prosthesis for the intertrochanteric fracture. There is nothing to evaluate the CHS itself with the finite element analysis and mechanical tests. They have same ways of the experimental test of the ASTM standards. The purpose of this study is to evaluate the existing CHS and the new CHS which have transformational design factors with finite element analysis and mechanical tests. The mechanical tests are divided into compression tests and fatigue test for evaluating the failure load, strength and fatigue life. This finite element method is same as the experimental test of the ASTM standards. Under 300N of compression load at the lag screw head. There are less differences between Group (5H, basic type) and Group which has 8 screw holes. However, there are lots of big differences between Group and Group which is reinforced about thickness of the neck range. Moreover, the comparison of Group and Group shows similar tendency of the comparison of Group and Group . The Group is reinforced the neck range from Group. After the experimental tests and the finite element analysis, the most effective design factor of the compression hip screws is the reinforcement of the thickness, even though, there are lots of design factors. Moreover, to unite the lag screw with the plate and to analyze by static analysis, the result of this method can be used with experimental test or instead of it.

  • PDF

프리스트레스트 콘크리트 부재용 재긴장 정착구 하중전달시험 (Load Transfer Test for Re-tensioning Post-Tension Kit for Prestressed Concrete)

  • 허재훈;노병철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제25권5호
    • /
    • pp.8-14
    • /
    • 2021
  • 포스트텐션 프리스트레스트 콘크리트 부재는 즉시 손실 이외에도 크리프, 건조수축 및 릴렉세이션과 같은 시간적 손실이 발생한다. 아울러 상부 슬래브 또는 포장 등의 교체 등에 의한 고정하중 변동으로 인하여 부재 상하부의 응력이 변화하게 된다. 이러한 응력의 변화는 부재의 안전성에 영향을 줄 경우가 있으며, 이 경우 프리스트레스 힘의 조절이 필요하다. 따라서 이 연구에서는 나사를 적용한 새로운 유형의 재긴장 포스트텐션 정착구를 제안하고, EAD160004 및 KCI-PS101에 규정된 하중전달시험을 통하여 하중에 대한 안전성과 변형률에 대한 안정성을 만족함을 구명하였다.

Mechanical evaluation of the use of conventional and locking miniplate/screw systems used in sagittal split ramus osteotomy

  • Santos, Zarina Tatia Barbosa Vieira;Goulart, Douglas Rangel;Sigua-Rodriguez, Eder Alberto;Pozzer, Leandro;Olate, Sergio;Albergaria-Barbosa, Jose Ricardo
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • 제43권2호
    • /
    • pp.77-82
    • /
    • 2017
  • Objectives: The aim of this study was to compare the mechanical resistance of four different osteosyntheses modeled in two different sagittal split ramus osteotomy (SSRO) designs and to determine the linear loading in a universal testing machine. Materials and Methods: An in vitro experiment was conducted with 40 polyurethane hemimandibles. The samples were divided into two groups based on osteotomy design; Group I, right angles between osteotomies and Group II, no right angles between osteotomies. In each group, the hemimandibles were distributed into four subgroups according to the osteosynthesis method, using one 4-hole 2.0 mm conventional or locking plate, with or without one bicortical screw with a length of 12.0 mm (hybrid technique). Each subgroup contained five samples and was subjected to a linear loading test in a universal testing machine. Results: The peak load and peak displacement were compared for statistical significance using PASW Statistics 18.0 (IBM Co., USA). In general, there was no difference between the peak load and peak displacement related to osteotomy design. However, when the subgroups were compared, the osteotomy without right angles offered higher mechanical resistance when one conventional or locking 2.0 mm plate was used. One locking plate with one bicortical screw showed higher mechanical resistance ($162.72{\pm}42.55N$), and these results were statistically significantly compared to one conventional plate with monocortical screws (P=0.016) and one locking plate with monocortical screws (P=0.012). The difference in peak displacement was not statistically significant based on osteotomy design or internal fixation system configuration. Conclusion: The placement of one bicortical screw in the distal region promoted better stabilization of SSRO. The osteotomy design did not influence the mechanical behavior of SSRO when the hybrid technique was applied.

건축물의 친환경 시공·해체를 위한 재료 분리형 GLT-Steel 보 개발 (Development of a Separable Glued-Laminated Timber (GLT)-Steel Beam for Eco-Friendly Construction and Dismantling of Buildings)

  • 방성준;오정권
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2023년도 봄 학술논문 발표대회
    • /
    • pp.23-24
    • /
    • 2023
  • In this study, an easily recyclable separable glued-laminated timber (GLT)-steel beam was developed, and a structural design method was presented. The GLT and steel were mechanically composited using self-tapping screws. The GLT-steel beam was designed to fail in the compression of GLT. The bending moment and load-carrying capacity of the GLT-steel beam were predicted based on composite beam theory and compared with experimental test data. As a result, the GLT-steel beam exhibited ductile behavior, and compression failure of GLT was observed. The screw connection showed no damage while the steel plate was extended. The load-carrying capacity of GLT after failure was similar to the load resistance predicted by the compressive strength of GLT and the tensile strength of steel. This indicates that the ductile behavior of the GLT-steel beam can be safely designed by the tensile strength (yield) of steel.

  • PDF

강판 보강 집성재 보의 휨성능 평가 연구 (Evaluation on Flexural Performance of Steel Plate Reinforced GLT Beams)

  • 박금성;이상섭;곽명근
    • 한국공간구조학회논문집
    • /
    • 제20권2호
    • /
    • pp.39-49
    • /
    • 2020
  • In this study, we will develop a hybrid cross-sectional shape of steel inserted type glued-laminated timber that can improve the strength of structural glued-laminated timber and maximize the ductility by using steel plate with excellent tensile and deformation ability. A total of three specimens were fabricated and the flexural performance test was carried out to evaluate the structural performance of the steel inserted type glued-laminated timber. In order to compare the effect of steel inserted glued-laminated timber, one structural glued-laminated timber test specimen composed of pure wood was manufactured. In addition, in order to evaluate the adhesion performance of the steel inserted, one each of a screw joint test specimen and a polyurethane joint test specimen was prepared. As a result, all the specimens showed the initial crack in the finger joint near the force point. This has been shown to be a cause of crack diffusion and strength degradation. The use of finger joints in the maximum moment section is considered to affect the strength and ductility of the glued-laminated timber beam. Polyurethane-adhesive steel inserted glued-laminated timber showed fully-composite behavior with little horizontal separation between the steel plate and glued-laminated timber until the maximum load was reached. This method has been shown to exhibit sufficient retention bending performance.

철도용 레일체결장치 부품.소재의 실험적 연구를 통한 신뢰성 설계 방안 (The Reliability Design Method According to the Experimental Study of Components and Materials of Railway Rail Fastening System)

  • 김효산;박준형;정명렬;박광화;이달재
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2011년도 정기총회 및 추계학술대회 논문집
    • /
    • pp.2090-2100
    • /
    • 2011
  • Railway rail fastening system is the critical device which gives big influences to not only the vehicle driving stability and the orbit's structural stability against the impulsive load, but also the noise vibration and the ride comfort. As a part of the low-carbon green growth, the importance of the railroad industry is getting highlights on its excellent energy-efficiency and eco-friendliness. However, so far the Korea's domestic rail fastening system technology is not so good and the technical reliance to abroad is very heavy. In this study, we conducted comparative analysis on the rail fastening system with new and used one of the same type. And those systems are imported by Seoul Metro and are being used by it. With this basis, we developed the components and the materials and then, established the durability assessment methods appropriate to the Korean domestic circumstances. And through the reliability qualification test on the 7 parts of the rail fastening system, we've improved the reliability and guaranteed the 15 years of service lifetime. ($B_{10}Life15$) Establishment and standardization of Reliability Standard on the parts of the rail fastening system such as anti-vibration pads, guide-plate, screw spike made it possible to perform the internationally fair assessment. And it is thought that we can satisfy the manufactures' and consumers' needs of cost-cutting and qualification security by shortening of assessment period on rail fastening system.

  • PDF