• Title/Summary/Keyword: Screen wick

Search Result 35, Processing Time 0.024 seconds

Development of Flat Plate Heat Pipe Using Screen Meshes (스크린 메쉬를 이용한 판형 히트 파이프의 개발)

  • Lee, Yong-Duck;Hong, Young-Ho;Kim, Hyun-Tae;Kim, Ku-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1506-1511
    • /
    • 2003
  • The present study proposes a new structure for a flat plate heat pipe which could embody a thin thickness, any shapes and high heat density a unit area. It is on the structure for the formation of vapor passages and the support of the case of the flat plate heat pipe. A screen mesh is used as the one. To verify the validity of the one, the flat plate heat pipe of 1.08mm thickness was made with a layer of the screen mesh with 14 and 100 mesh number respectively and tested. Here the screen mesh with 14 mesh number plays a role of the vapor passage and the support of the case and the screen mesh with 100 mesh number functions as the wick structure. T he results show that the screen mesh excellently carries out the function of the vapor passage and the support of the case.

  • PDF

Surface Modification of Screen-Mesh Wicks to Improve Capillary Performance for Heat Pipes (히트파이프 모세관 성능 개선을 위한 스크린-메쉬 윅의 표면 개질)

  • Jeong, Jiyun;Lim, Hyewon;Kim, Hyewon;Lee, Sangmin;Kim, Hyungmo
    • Tribology and Lubricants
    • /
    • v.38 no.5
    • /
    • pp.185-190
    • /
    • 2022
  • Among the operating limits of a heat pipe, the capillary limit is significantly affected by the characteristics of the wick, which is determined by the capillary performance. The major parameters for determining capillary performance are the maximum capillary pressure and the spreading characteristics that can be expected through the wick. A well-designed wick structure improves capillary performance and helps improve the stability of the heat pipe by enhancing the capillary limit. The capillary performance can be improved by forming a porous microstructure on the surface of the wick structure through surface modification techniques. In this study, a microstructure is formed on the surface of the wick by using a surface modification method (i.e., an electrochemical etching process). In the experiment, specimens are prepared using stainless-steel screen mesh wicks with various fabrication conditions. In addition, the spreading and capillary rise performances are observed with low-surface-tension fluid to quantify the capillary performance. In the experiments, the capillary performance, such as spreading characteristics, maximum capillary pressure, and capillary rise rate, improves in the specimens with microstructures formed through surface modification compared with the specimens without microstructures on the surface. The improved capillary performance can have a positive effect on the capillary limit of the heat pipe. It is believed that the surface microstructures can enhance the operational stability of heat pipes.

A Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks (스크린 윅을 삽입한 동-물 히트파이프에서 모세관 한계에 관한 연구)

  • 박기호;이기우;노승용;이석호;유성연
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1023-1030
    • /
    • 2002
  • This paper is to research the heat transfer characteristic performance of the copper-water heat pipe with the screen wicks. Recently, the semiconductor capacity of an electronic unit has been larger, on the contrary, its size has been much smaller. As a result, a high-performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling water and the mesh number of screen wicks. The distilled water was used for the working fluid. At the inclination angle $6^{\circ}$ in top heat mode, the two layers of the 100-mesh screen wick showed the best heat transfer performance. The thermal resistance of the two layers with the 100-mesh screen was 0.7~$0.8^{\circ}C$/W.

Experimental study on the working characteristic of a heat pipe with combined wick (조합형 윅을 사용한 히트파이프의 작동특성에 관한 실험적 연구)

  • 홍진관;부준홍;정원복
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.11 no.2
    • /
    • pp.236-243
    • /
    • 1999
  • Aluminum/Freon-22 heat pipes were manufactured and tested which have a special wick geometry combining axial groove and screen mesh. There were 14 axial grooves in a cross-section and these were covered by two layers of 350 mesh screens to enhance the thermal performance. The performance test was conducted by varying the thermal load and tilt angle. Furthermore, the operation limits and overall heat transfer coefficient were investigated. The experimental results will be useful in a variety of applications, especially in design and manufacturing of a high-efficiency heat exchanger and energy recovery systems.

  • PDF

Influence of NCG Charging Mass on the Thermal Characteristics of Variable Conductance Heat Pipe with Screen Mesh Wick (스크린 메쉬형 가변전열 히트파이프에서 NCG양에 따른 작동특성 변화)

  • Suh, J.S.;Park, Y.S.;Kang, C.H.;Chung, K.T.;Park, K.H.;Lee, K.W.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1400-1405
    • /
    • 2004
  • Experimental study is performed to investigate the effect of heat load and operating temperature on the thermal performance of a heat pipe with screen mesh wick. The heat pipe was designed in 200 screen meshes, 500mm length and 12.7mm O.D tube of copper, water as working fluid(4.8g) and nitrogen as non-condensible gas(NCG). The heat pipe used in this study has evaporator, condenser and adiabatic section, respectively. Experimental data of axial wall temperature distribution is presented for heat transport capacity, the temperature of cooling water of condenser, inclination angle, and operating temperature. For the results from this study, it is found that, for the same charging mass of working fluid, the initial operating temperature and the overall wall temperatures of heat pipe are higher for NCG charging mass of $5.0{\times}10^{-6}kg$ and $3.4{\times}10^{-6}kg$, than that of $1.0{\times}10^{-6}kg$.

  • PDF

Influence of NCG Charged Mass on the Thermal Performance of VCHP with Screen Mesh Wick (스크린메쉬형 VCHP에서 NCG량에 따른 열전달 성능실험)

  • Park, Young-Sik;Chung, Kyung-Taek;Suh, Jeong-Se
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.20 no.10
    • /
    • pp.689-695
    • /
    • 2008
  • Experimental study has been performed to investigate the influence of non-condensible gas(NCG) charged mass on the thermal performance of a variable conductance heat pipe(VCHP) with screen mesh wick. The VCHP is furnished by screen mesh number 200 for the pipe outer diameter of 12.7mm and the pipe length of 500 mm. The VCHP is filled with water as working fluid of 4.8g and nitrogen as NCG and has evaporator, condenser and adiabatic section, respectively. For the results from experiment, it is found that, for the same charged mass of working fluid, the overall wall temperatures of heat pipe grows up with increasing NCG charged mass. The variation of operating temperature of VCHP reduces with increasing NCG mass. In addition, the profile of axial wall temperature distribution is presented for heat transport capacity of heat pipe, the temperature of cooling water of condenser, inclination angle, and operating temperature.

Analysis of Woven Wire Wick Structure for a Miniature Heat Pipe (소형 히트파이프용 편조 윅의 형상 해석)

  • 이진성;김철주
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.1
    • /
    • pp.18-24
    • /
    • 2001
  • Woven wire wick is very effective structure because of its easiness to insert inside of pipe for a miniature heat pipe. The present study was conducted to investigate the effect of the effective flow passage with respect to wire helix angle. Also effective thermal conductivity were examined by defining mean porosity considering effective liquid flow passages. Effective heat transfer area is varied with respect to wire helix angle, and in the range of $\thet=60~65^{\circ}C$, heat transfer area is decreased about 15~20%. Permeability of woven wire wick shows similar value of 200 mesh screen wick. And comparison of experimental results on effective thermal conductivity shows a fairly good agreement with the analytical results.

  • PDF

A Comparative Study of Heat Pipes with Enlarged Condenser Section for Evacuated Solar Collectors (확관 응축부를 갖는 진공관형 태양열 집열기용 히트파이프 성능 비교 연구)

  • Boo, Joon-Hong;Chung, Won-Bok;Kwak, Hee-You
    • Journal of the Korean Solar Energy Society
    • /
    • v.22 no.4
    • /
    • pp.18-25
    • /
    • 2002
  • For application to medium temperature solar collerctors $(80\sim120^{\circ}C)$, a heat pipe should be designed properly to efficiently transfer heat to a hotter condenser than common applications. Among many wick structure candidates for heat pipes of this type, a slab wick was selected based on promising performance data reported previously. The thermal performance of slab wick heat pipes, screen wick heat pipes and thermosyphons with enlarged condenser section were experimentally investigated for comparison purpose. The heat pipes were 8.0 mm O.D. (evaporator section) and 25.4 mm O.D. (condenser section) made of copper. The experimental data of the heat pipes were analysed in terms of thermal resistance against thermal load and coolant temperature.

Analysis of Thermal Control Characteristics of VCHP by the Charging Mass of Non-Condensible Gas

  • Suh, Jeong-Se;Park, Young-Sik;Chung, Kyung-Taek;Kim, Byoung-Gi
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.14 no.4
    • /
    • pp.125-130
    • /
    • 2006
  • This study has been performed to investigate the thermal performance of variable conductance heat pipe (VCHP) with screen meshed wick. The active length of condenser section in a VCHP is varied by non-condensible gas, which controls the operating temperature, and the heat capacity of VCHP is controlled by the operating temperature. In this study, numerical analysis of the VCHP based on the diffusion model of non-condensible gas is done for the thermal control performance of VCHP. Water is used as a working fluid and nitrogen as a control non-condensible gas in the copper tube. As a result, the thermal conductance of VCHP has been compared with that of constant conductance heat pipe (CCHP) corresponding to the variation of operating temperature.

Study on the Capillary Limitation in Copper-Water Heat Pipes with Screen Wicks

  • Park, Ki-Ho;Lee, Ki-Woo;Noh, Seung-Yong;Rhi, Seok-Ho;Yoo, Seong-Yeon
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.12 no.1
    • /
    • pp.21-29
    • /
    • 2004
  • This paper is to study the heat transfer performance of the copper-water heat pipe with screen wicks. Recently, the semiconductor capacity of an electronic unit becomes larger, but its size becomes much smaller. As a result, a high- performance cooling system is needed. Experimental variables are inclination angles, temperatures of cooling waters and the mesh number of screen wicks. The distilled water was used as a working fluid. Based on the experimental results, when the copper-water heat pipe of 6mm diameter is used at the top heat mode, the heat transfer performance of 100 mesh 2 layers heat pipe is better than that of 150 and 200 mesh. The thermal resistance of the two layers with the 100-mesh screen was 0.7-$0.8^{\circ}C$/W.