Electron Beam Physical Vapor Deposition (EB-PVD) is a typical technology for thermal barrier coating with Yttria Stabilized Zirconia (YSZ) on aero gas turbine engine. In this study EB-PVD method was used to fabricate dense YSZ film on NiO-YSZ as a electrolyte of Solid Oxide Fuel Cell (SOFC). Dense YSZ films of -10 $\mu$m thickness showed nano surface structure depending on deposition temperature. Electrical conductivities of YSZ film and electric power density of the single cell were evaluated after screen- printing $LaSrCoO_3$ as a cathode.
Transactions on Electrical and Electronic Materials
/
v.18
no.5
/
pp.261-264
/
2017
$Ni_{0.79}Co_{0.15-x}Cu_xMn_{2.06}O_4$ ($0{\leq}x{\leq}0.09$) thick films were fabricated using the conventional solid-state reaction method and screen-printing method. Structural and electrical properties of specimens based on the amount of Cu were observed in order to investigate their applicability in the infrared detector. All specimens showed a single spinel phase with a homogeneous cubic structure. As the amount of Cu increased, the average grain size increased and was found to be approximately $5.01{\mu}m$ for the $Ni_{0.79}Co_{0.06}Cu_{0.09}Mn_{2.06}O_4$ specimen. The thickness of all specimens was approximately $55{\sim}56{\mu}m$. As Cu content increased, the resistivity and TCR properties at room temperature decreased, and these values for the $Ni_{0.79}Co_{0.06}Cu_{0.09}Mn_{2.06}O_4$ specimen were $502{\Omega}-cm$ and $-3.32%/^{\circ}C$, respectively. The responsivity and noise properties decreased with an increase in Cu content, with the specimen with a Cu content of x=0.09 showing 0.0183 V/W and $5.21{\times}10^{-5}V$, respectively.
Kim, I.S.;Joo, H.K.;Song, J.S.;Kim, M.S.;Jeong, S.J.;Lee, D.S.
Proceedings of the KIEE Conference
/
2008.07a
/
pp.1246-1247
/
2008
With recent advanced in portable electric devices, wireless sensor, MEMS and bio-Mechanics device, the new typed power supply, not conventional battery but self-powered energy source is needed. Particularly, the system that harvests from their environments are interests for use in self powered devices. For very low powered devices, environmental energy may be enough to use power source. Therefore, in other to made piezoelectric energy harvesting device, PMN-PZT thick film was formed by the screen printing method on the Ag/Pd coated alumina substrate. The layer was 8 layers and slurry where a-terpineol, ethycellulose, ferro B-75001 as Vehicle, PMN-PZT powder used are fabricated by ball mill. The output power quality was be also investigated by changing the load resistance, weight and frequency. The made piezoelectric energy harvesting device was resulted from the conditions of 33$k{\Omega}$, 0.25g, 197Hz respectively. The thick film was prepared at the condition of 2.75Vrms, and its power was 230${\mu} W$ and its thickness was 56${mu}m$. The piezoelectric energy harvesting device output voltage was increased, when the load weight, load resistance was increasing and resonance frequency was diminishing. The other side, resonance frequency was diminished, when the weight was increasing. And output power was continuously it changed by load resistance, output voltage, weight and resonance frequency.
This paper aims to focus on the microwave processing of thick films which is a fast, cheap technique and could be the alternative to the currently used conventional high temperature processing technique. Microwave processing has gained worldwide acceptance as a novel method for heating and sintering a variety of materials, as it offers specific advantages in terms of speed, energy efficiency, process simplicity, finer microstructures and lower environmental hazards. Silver conducting thick films were prepared and processed in the household microwave oven. The films sintered at different time period by keeping the other parameter such as microwave power, film thickness etc constant. The microstructure analysis revealed that the surface morphology of the microwave processed films become compact with respect to the processing time. The sheet resistance for microwave sintered silver films is in the range of 0.003 to $1.207{\Omega}/{\Box}$ where as the films fired at 750 and $850^{\circ}C$ showed the resistance of 0.009 and $0.003{\Omega}/{\Box}$ which can be comparable. The results revealed that the microstructure of the microwave sintered films has more uniform and compact surface than that of the conventionally fired films. The paper reports upon the preparation of silver thick film by screen printing technique and processing the same by microwave which also compared with the conventionally processed thick films.
Lee, Hyo-Sung;Kim, Byung-Ho;Hwang, Jong Hee;Lim, Tae-Young;Kim, Jin-Ho;Jeon, Dae-Woo;Jung, Hyun-Suk;Lee, Mi Jai
Korean Journal of Materials Research
/
v.26
no.1
/
pp.22-28
/
2016
In this study, we fabricated high quality color conversion component with green/red phosphor and low melting glass frit. The color conversion component was prepared by placing the green and red phosphor layer on slide glass via screen printing process. The properties of color conversion component could be controlled by changing coating sequence, layer thickness and heat treatment temperature. We discovered that optical properties of color conversion component were generally determined by the lowest layer. On the other hand, the heat treatment temperature also affected to correlated color temperature (CCT) and color rending index (CRI). The color conversion component with a green (lower) - red (upper) layer which was sintered at $550^{\circ}C$ showed the best optical properties: CCT, CRI and luminance efficacy were 3340 K, 78, and 56.5 lm/w, respectively.
Nano-indium-coated ZnO:In thick films were prepared by a hydrothermal method. ZnO:In gas sensors were fabricated by a screen printing method on alumina substrates. The gas sensing properties of the gas sensors were investigated for hydrocarbon gas. The effects of the indium concentration of the ZnO:In gas sensors on the structural and morphological properties were investigated by X-ray diffraction and scanning electron microscopy. XRD patterns revealed that the ZnO:In with wurtzite structure was grown with (1 0 0), (0 0 2), and (1 0 1) peaks. The quantity of In coating on the ZnO surface increased with increasing In concentration. The sensitivity of the ZnO:In sensors was measured for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity to $CH_4$ gas and $CH_3CH_2CH_3$ gas of the ZnO:In sensors was observed at the In 6 wt%. The response and recovery times of the 6 wt% indiumcoated ZnO:In gas sensors were 19 s and 12 s, respectively.
The effects of a Ni coating on the sensing properties of nano ZnO:Ni based gas sensors were studied for $CH_4$ and $CH_3CH_2CH_3$ gases. Nano ZnO sensing materials were prepared by the hydrothermal reaction method. The Ni coatings on the nano ZnO surface were deposited by the hydrolysis of zinc chloride with $NH_4OH$. The weight % of Ni coating on the ZnO surface ranged from 0 to 10 %. The nano ZnO:Ni gas sensors were fabricated by a screen printing method on alumina substrates. The structural and morphological properties of the nano ZnO : Ni sensing materials were investigated by XRD, EDS, and SEM. The XRD patterns showed that nano ZnO : Ni powders with a wurtzite structure were grown with (1 0 0), (0 0 2), and (1 0 1) dominant peaks. The particle size of nano ZnO powders was about 250 nm. The sensitivity of nano ZnO:Ni based sensors for 5 ppm $CH_4$ gas and $CH_3CH_2CH_3$ gas was measured at room temperature by comparing the resistance in air with that in target gases. The highest sensitivity of the ZnO:Ni sensor to $CH_4$ gas and $CH_3CH_2CH_3$ gas was observed at Ni 4 wt%. The response and recovery times of 4 wt% Ni coated ZnO:Ni gas sensors were 14 s and 15 s, respectively.
No, Hyo-Seop;Bae, In-Su;Jeong, Hun-Taek;Lee, Su-Seon;Hong, Gwang-Jun;Lee, Hyeon-Gyu;Park, Jin-Seong
Korean Journal of Materials Research
/
v.11
no.4
/
pp.272-277
/
2001
NiO-doped $WO_3$ thick films were prepared by a screen printing technique. The electrical Property and microstructure of the films were investigated with the partial pressure of oxygen and the amount of NiO. The grain size of NiO-doped $WO_3$ was smaller than that of undoped $WO_3$ but the grain sixte of 0.1, 1, 10 mol% NiO-doped$ WO_3$ were nearly the same. The electrical conductance of the $WO_3$ thick films decreased with the oxygen partial pressure, and increased with the amount of NiO to the limit of solid solution. The variation of the electrical conductance with temperature is not so large in the extrinsic region, but it changed rapidly in the intrinsic region. The conductance decreased with adsorption of oxygen in the intermediate range between the extrinsic and intrinsic region.
The key component of a direct methanol fuel cell (DMFC) is the membrane electrode assembly (MEA), which comprises a polymer electrolyte membrane and catalyst layers (anode and cathode electrode). Generally the catalyst layer is coated on the porous electrode supporter (e.g. carbon paper or cloth) using various coating methods such as brushing, decal transfer, spray coating and screen printing methods. However, these methods were disadvantageous in terms of the uniformity of catalyst layer thickness, catalyst loss, and coating time. In this work, we used bar-coating method which can prepare the catalyst layer with uniform thickness for MEA of DMFC. The surface and cross-section morphologies of the catalyst layers were observed by SEM. The performances and resistance of the MEAs were investigated through a single cell evaluation and impedance analyzer.
$SnO_2$ as raw material of sensor for $NO_2$ detection was prepared by precipitating $SnCl_4$ solution with aqueous ammonia followed by calcining in air. The characterization of $SnO_2$ was carried out using FT-IR and XRD, and $SnO_2$ thick film sensor was fabricated by screen-printing method. The particle size of $SnO_2$ calcined at higher temperature increased due to the growth of crystalline. $SnO_2$ sensor fabricated by using $SnO_2$ sample calcined at $1000^{\circ}C$ followed by heat treatment at $700^{\circ}C$ exhibited excellent sensing characteristics and selectivity for $NO_2$ gas at the operating temperature of $250^{\circ}C$.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.