• Title/Summary/Keyword: Scramjet Model

Search Result 78, Processing Time 0.024 seconds

Numerical Study on the Characteristics of Dual-Mode Scramjet Isolator (이중 모드 스크램제트 격리부 특성에 대한 수치해석적 연구)

  • Deng, Ruoyu;Kim, Heuy Dong;Jin, Yingzi
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.5
    • /
    • pp.31-36
    • /
    • 2015
  • As one of the most promising propulsive systems in the future, the dual-mode scramjet engine has drawn the attention of many researches. Detailed flow features concerned with the isolator play an important role in the dual-mode scramjet system. The 2D numerical method has been used for the dual-mode scramjet with wind tunnel. To validate the ability of the numerical model, numerical results have been compared with the experimental results. Overall pressure distributions show quite good match with the experimental results. Back pressure has been studied for maximum pressure rising. According to the results, pressure distribution of supersonic inlet section is not influenced by back pressure. The shock train is pushed towards upstream as the back pressure increases. The maximum value of back pressure without inlet unstart goes up rapidly and then keeps constant when the isolator length increases. The optimal length of isolator section ($L/H_{th}$) is 8.7 in this model.

A Unified 3D Numerical Analysis of a Model Scramjet Engine with a Cavity Flame-Holder and Two Intake Side Walls (공동형 보염기를 갖는 모델 스크램제트 엔진의 흡입구 측면효과를 고려한 3차원 통합 유동해석)

  • Yeom, Hyo-Won;Kim, Sung-Jin;Sung, Hong-Gye;Kang, Sang-Hoon;Yang, Soo-Suk
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.590-593
    • /
    • 2009
  • To identify the detailed 3D flow characteristics of a model scramjet engine, a unified 3D numerical analysis was performed. The numerical domain of concern includes the entire flow path of the model scramjet engine extending from the intake to the nozzle exhaust. Turbulent models($k-{\omega}$ SST and low Reynolds number k-e with Sarkar model) were applied with comparison of experiment result. Intake side wall's effect on flow characteristics was analyzed in view points of flow quality at inlet duct and near the flame holder as well. The code is paralleled with multi-block feature using MPI(Massage Passing Interface) library to speed up the 3D calculation.

  • PDF

A Starting Characteristics Study of the Scramjet Engine Test Facility with a Mach 5.0 Nozzle (마하 5.0 노즐을 장착한 스크램제트 엔진 시험설비의 시동 특성 연구)

  • Lee, Yang-Ji;Yang, In-Young;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.63-72
    • /
    • 2013
  • A Mach 5 nozzle and a diffuser of the Scramjet Engine Test Facility (SETF) were made for a hydrocarbon-fueled scramjet engine. SETF, attached with a diffuser guide, started with a model of 60% blockage, though the model engine could not start by over expansion of the facility nozzle. The model was moved into the nozzle to escape the shock generated from the nozzle exit, both SETF and the engine could start. The pitot rake experiments (blockage of 2.3%) were done for measuring the core flow in the test section. From the pitot experiments, the core flow was expanded by an under expansion. It means that the core flow in the test section was related with a model blockage. SETF and the engine with a blockage of 33% work normally. From a series of experiments, SETF started with a normal shock efficiency of 58%, regardless of a blockage ratio.

Numerical Simulation Study on Combustion Characteristics of Hypersonic Model SCRamjet Combustor

  • Won, Su-Hee;Eunju Jeong;Jeung, In-Seuck;Park, Jeong-Yeol
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.42-47
    • /
    • 2004
  • Air-fuel mixing and flame-holding are two important factors that have to be considered in the design of an injection system. Different injection strategies have been proposed with particular concern for rapid air-fuel mixing and flame-holding. Two representative injection techniques can be applied in a supersonic combustor. One of the simplest approaches is a transverse(normal) injection. The cavity flame holder, an integrated fuel injection/flame-holding approach, has been proposed as a new concept for flame holding and air-fuel mixing in a supersonic combustor. This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of a model scramjet engine combustor, where hydrogen is injected into a supersonic cross flow and a cavity. The combustion phenomena in a model scramjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, were observed around the separation region of the transverse injector upstream and the inside cavity. The results show that this flow separation generates recirculation regions which increase air-fuel mixing. Self-ignition occurs in the separation-freestream and cavity-fteestream interfaces.

  • PDF

Thrust Analysis of Combustor Through Control of Scramjet Propulsion System (스크램제트 추진 시스템의 비행 제어를 통한 연소기의 추력 분석)

  • Ko, Hyosang;Yang, Jaehoon;Yoh, Jai ick;Choi, Hanlim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.1
    • /
    • pp.29-41
    • /
    • 2021
  • The PID controller with fin angle and thrust as control input was designed based on the aerodynamic data of scramjet system. Flight simulation following a given trajectory which strike the target point after climb and cruise with constant dynamic pressure was conducted. After that, the required thrust for the climb and cruise was calculated and the required fuel flow rate for the hydrogen fuel dual mode scramjet combustor was analyzed. The combustor analysis of this study which conducted on integrated model of independently developed inlet, combustor, nozzles and external aerodynamic models, laying the foundation for the integrated design of the air breathing hypersonic system.

Design Procedures of SCRamjet Engine Intake and Numerical Analysis (스크램제트 엔진 흡입구의 설계 및 3차원 성능해석)

  • Kang, Sang-Hun;Shin, Hun-Bum;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.339-343
    • /
    • 2006
  • Model SCRamjet Engine intake is designed for Ground test. The designed Intake provides hot and slow flow with the combustor. Flow separation is controlled by the shock wave segregation based on the Korekegi criteria. With Kantrowitz limit analysis, side wall cut out region is also set for the self start.

  • PDF

Mixing Augmentation with Cooled Pylon Injection in Scramjet Combustor (냉각 파일런 분사를 이용한 스크램제트 연소기 내 혼합증대)

  • Lee, Sang-Hyeon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.594-597
    • /
    • 2009
  • The mixing characteristics of pylon injection in a Scramjet combustor and effects of film cooling to protect pylon from air-heating. Three-dimensional Navier-Stokes equations with $k-{\omega}$ SST turbulence model were used. Fuel hydrogen and air were considered as coolants. There were remarkable improvements of penetration and mixing rate with the pylon injection. There also over-heating on the front surface of pylon without film cooling. The coolant injected parallel to the front surface of the pylon protect the pylon from over-heating.

  • PDF

A Study of Supersonic Combustion using Various Liquid Hydrocarbon Fuels

  • Hashimoto, Susumu;Hiramoto, Ayumu;Tsue, Mitsuhiro;Kono, Michikata;Ishikawa, Yuta;Suzuki, Shunsuke;Ujiie, Yasushige
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.03a
    • /
    • pp.340-345
    • /
    • 2008
  • Liquid hydrocarbon fuels are gathering increasing attention as candidates for a scramjet engine fuel. Experimental researches on supersonic combustion of kerosene have been conducted in model scramjet combustors. Through these works, understanding of combustion characteristics of kerosene have been revealed on some level, and so we decided to work on other kinds of liquid hydrocarbon fuels in order to explore effects of fuel properties on supersonic combustion performances, especially self-ignition and flame-holding. In addition, comparing the results of new fuels with kerosene, the relationship between fuel properties and supersonic combustion characteristics was discussed.

  • PDF

Combustion Characteristics of Hypersonic SCRamjet Engine (극초음속 스크램제트 엔진의 연소특성)

  • 원수희;정은주;정인석;최정열
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.61-69
    • /
    • 2004
  • This paper describes numerical efforts to characterize the flame-holding and air-fuel mixing process of model SCRamjet engine combustor, where a hydrogen jet injected into a supersonic cross flow and in a cavity Combustion phenomena in a model SCRamjet engine, which has been experimentally studied at University of Queensland and Australian National University using a free-piston shock tunnel, was observed around separation region of upstream of the normal injector and inside of cavity. The results show that the separation region and cavity generates several recirculation zones, which increase the fuel-air mixing. Self ignition occurs in the separation-freestream and cavity-freestream interface.

Internal Flow Aerodynamic Test of a Mach 5 Scramjet Engine (마하 5 스크램젯 엔진의 내부 유동 공력 시험)

  • Yang, In-Young;Lee, Yang-Ji;Kim, Young-Moon;Lee, Kyung-Jae;Kang, Sang-Hoon;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.584-587
    • /
    • 2011
  • An internal flow aerodynamic test was performed for a Mach 5 scramjet engine. The test was done without fuel injection, as a preliminary test for the combustion test. Test engine is an engineering model with intake cross-section of $70mm{\times}200mm$ and total length of 1.7m. Test facility is a blowdown-type, high enthalpy, hypersonic facility. 19 pressures were measured through the holes on the model surface along the engine internal flow passage. It was found that the facility start is possible, and also supersonic flow is maintained inside the engine.

  • PDF