• Title/Summary/Keyword: Scr

Search Result 934, Processing Time 0.031 seconds

A Study on Effect of Urea-SCR Aftertreatment System upon Exhaust Emissions in a LPG Steam Boiler (LPG 증기보일러의 배기 배출물에 미치는 요소-SCR 후처리 시스템의 영향에 관한 연구)

  • Bae, Myung-Whan;Song, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.3
    • /
    • pp.1-11
    • /
    • 2014
  • The aim of this study is to investigate the effect of SCR reactor on the exhaust emissions characteristics in order to develop a urea-SCR aftertreatment system for reducing $NO_x$ emissions. The experiments are conducted by using a flue tube LPG steam boiler with the urea-SCR aftertreatment system. The urea-SCR aftertreatment system utilizes the ammonia converted from 17% aqueous urea solution injected in front of SCR catalyst as a reducing agent for reducing $NO_x$ emissions. The equivalence ratio, urea injection amount, ammonia slip and $NO_x$ conversion efficiency relative to boiler load are applied to discuss the experimental results. In this experiment, the average equivalence ratio is calculated by changing only the fuel consumption rate while the intake air amount is constantly fixed at $25,957.11cm^3/sec$. The average equivalence ratios are 1.38, 1.11, 0.81 and 0.57 when boiler loads are 100, 80, 60 and 40%. The $NO_x$ conversion efficiency is raised with increasing urea injection amount, and $NH_3$ slip is also boosted at the same time. Consequently, the $NO_x$ conversion efficiency relative to boiler load should be examined in combination with urea injection amount and $NH_3$ slip. The results are calculated by 89, 85, 77 and 79% for the boiler loads of 100, 80, 60 and 40%. The appropriate amount of urea injection for the respective boiler load can be not discussed by only $NO_x$ emissions, and should be determined by considering the $NO_x$ conversion efficiency, $NH_3$ slip and reactive activation temperature simultaneously. In this study, the urea amounts of 230, 235, 233 and 231 mg/min are injected at the boiler loads of 100, 80, 60 and 40%, and the final $NH_3$ slips are measured by 8.48, 5.58, 11.97 and 11.34 ppm at the same conditions. THC emission is affected by the SCR reactor under other experimental conditions except 100% engine load, and CO emission at only 40% engine load. The rest of exhaust emissions are not affected by the SCR reactor under all experimental conditions.

Effect of Vanadium Oxide Loading on SCR Activity and $SO_2$ Resistance over $TiO_2$-Supported $V_2O_5/TiO_2$ Commercial De-NOx Catalysts (상용 $V_2O_5/TiO_2$ 촉매의 바나듐 함량이 SCR 반응성과 $SO_2$ 내구성에 미치는 영향)

  • Park, Kwang Hee;Cha, Wang Seog
    • Applied Chemistry for Engineering
    • /
    • v.23 no.5
    • /
    • pp.485-489
    • /
    • 2012
  • We investigated vanadium (V) loading effects on selective catalytic reduction (SCR) activity and $SO_2$ resistance using commercial SCR catalysts applied on a power plant and incinerator with different amounts of V loading. These catalysts were characterized using XRD, Raman, ICP, BET analysis and found to contain $TiO_2$ (anatase) supported $V_2O_5$ added $WO_3$ and $SiO_2$. The SCR activity of the catalysts increased by increasing either the $V_2O_5$ or the $WO_3$ loading amounts; the SCR activity of the catalysts added $WO_3$ is higher than that of $WO_3$-free catalysts. As the V loading amount in the catalyst increased, the $SO_2$ durability decreased. The $V_2O_5$ supported $TiO_2$ catalyst added $WO_3$ and $SiO_2$ inhibits the deactivation process by $SO_2$. The $SO_2$ resistance of catalysts added $SiO_2$ is higher than that of catalysts added $WO_3$.

Improvement for the Degree of Client Satisfaction in the Sample Collection Room (검체채취실의 고객만족도 향상)

  • Park, Youn Bo;Kang, Hee Jung;Kwon, Hung Man;Ahn, Sang Jin;Yang, Suk Hwan;Tae, Yeun Ju;Chin, Young Hee;Jo, Hyon Koo;Lee, Bok Ja;Koo, Sun Hoe
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.36 no.2
    • /
    • pp.222-232
    • /
    • 2004
  • The sample collection room(SCR) will have much more influence than all the other departments for the improvement of hospital image, if anyone coming to the SCR in the hospital goes back with the perfect complacency and because most clients who have much stresses and fatigues pay a final visit to the SCR via receipt-diagnosis- acceptance process. SCR has improved its image for the purpose of gratifying clients, in order for clients to visit the hospital again, the quality improvement(QI) team in the Diagnosis Inspection Medical Department has come to a conclusion as follows. The degree of client gratification before improvement marks 65.9 point, but the degree after improvement was 74.2 point. Therefore, satisfaction has increased by 8.3 points. The degree of client gratification in groups before improvement marks (1) service parts-89.2 points (2) facilities and environments-49.1 point (3) toilet facilities-46.3 point. But its gratification after improvement marks (1) 92.5 point (2) 60.1 point (3) 61.0 point. Therefore the degree of satisfaction has increased by (1) 3.3 point, (2) 11.0 point, (3) 14.7 point. The progress of facility improvement plans and the exclusion of improvement on the facility contents in the hospital have made facilities and environments of SCR and toilet facilities to be poorly improved. Although service parts have a good mark, and the facilities and environments are not scoring well, the whole degree clients' gratification of SCR couldn't be helped by the low grade. Therefore the bottom line for the clients' gratification of SCR in the future is to ameliorate the facilities and environments. SCR will take the clients' gratification survey every year and if any items get low marks, that is, below 90 point throughout the survey, SCR will immediately starts the improvement work for the clients' gratification with operating the programs of controlling quality continually, and SCR should induce the operation of services, participating in the kind campaign drive for clients. So SCR will adopt the incentive system for the best staff members who perform these kinds of services.

  • PDF

Characteristic Evaluation of SCR catalyst using Aluminum dross (알루미늄 폐드로스를 활용한 SCR 탈질촉매 제조 및 특성평가)

  • Bae, Min A;Kim, Hong Dae;Lee, Man Sig
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.10
    • /
    • pp.4672-4678
    • /
    • 2013
  • Aluminum dross is formation at the surface of the molten metal as the latter reacts with the furnace atmosphere and it was an unavoidable by-product of the aluminum production process. However aluminum dross was usually landfilled or disposed without treatment, causing much environmental damage. The purpose of this study is to investigate the possibility of ceramic catalyst support using recycled Al dross. The recycled Al dross was made into SCR catalyst by mixing with $WO_3$, $V_2O_5$ and $TiO_2$. The $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst was observed with XRF, XRD and BET. $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR strength was measured by Universal Testing Machine(UTM). As the added $Al_2O_3$, streagth is increased. And the NOx removal activity was observed by MR(Micro-Reactor). The temperatures ranging from $350^{\circ}C$ and $400^{\circ}C$, $V_2O_5-WO_3/TiO_2-Al_2O_3$ SCR catalyst De-NOx performance result of showed excellent activity over 90% at application condition.

Analysis of an internal flow with multi-perforated tube geometry in an integrated Urea-SCR muffler (다공튜브 형상변화에 따른 촉매 삽입형 Urea-SCR 머플러 내부유동 해석)

  • Moon, Namsoo;Lee, Sangkyoo;Lee, Jeekeun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.5
    • /
    • pp.500-509
    • /
    • 2013
  • This study reports a numerical analysis of the internal flow characteristics of the integrated urea-SCR muffler system with the various geometries of the multi-perforated tube which is set up between the muffler inlet and in front of SCR catalysts. The multi-perforated tube is generally used to disperse uniformly the urea-water solution spray and to make better use of the SCR catalyst, resulting in the increased $NO_x$ reduction and decreased ammonia slip. The effects of the multi-perforated tube orifice area ratios on the velocity distributions in front of the SCR catalyst, which is ultimately quantified as the uniformity index, were investigated for the optimal muffler system design. The steady flow model was applied by using a general-purpose commercial software package. The air at the room temperature was used as a working fluid, instead of the exhaust gas and urea-water solution spray mixture. From the analysis results, it was clarified that the multi-perforated tube geometry sensitively affected to the formation of the bulk swirling motion inside the plenum chamber set in front of the SCR catalyst and to the uniformity index of the velocity distribution produced at the inlet of the catalyst.

Leaching of Vanadium and Tungsten from Spent SCR Catalysts for De-NOx by Soda Roasting and Water Leaching Method (소다배소(焙燒) 및 수침출법(水浸出法)에 의한 탈질용(脫窒用) 폐(廢) SCR 촉매(觸媒)로부터 바나듐과 텅스텐 침출(浸出))

  • Kim, Hye-Rim;Lee, Jin-Young;Kim, Joon-Soo
    • Resources Recycling
    • /
    • v.21 no.6
    • /
    • pp.65-73
    • /
    • 2012
  • Selective catalytic reduction(SCR) catalysts are obtained from de-NOx system of thermoelectric power plant. A process was developed for valuable metals such as vanadium and tungsten recovery from spent SCR catalyst by using soda roasting followed by water leaching. Spent SCR catalyst having $V_2O_5$(1.23 mass %) and $WO_3$(7.73 mass %). For getting soluble metal forms of the targeted metals like vanadium and tungsten soda roasting process was implemented. In soda roasting process, sodium carbonate added 5 equivalent ratio at roasted temperature $850^{\circ}C$ with 120 min roasted time for $544{\mu}m$ particle size of spent SCR catalyst. After soda roasting process moved to water leaching for roasted spent catalyst. Before leaching process the roasted spent catalyst was grinded up to $-45{\mu}m$ size. The leaching time is 30 min at $40^{\circ}C$ temperature, 10 % pulp density. The final leaching efficiency obtained 46 % of vanadium and 92 % of tungsten from present process.

Process Design and Performance Test of the SCR Pilot Plant (SCR Pilot Plant 성능실험 및 공정 설계)

  • Kim, Jeong-Il;Chang, In-Gab;Seon, Chil-Yeong;Moon, Kil-Ho
    • Clean Technology
    • /
    • v.9 no.2
    • /
    • pp.71-79
    • /
    • 2003
  • The selective catalytic reduction (SCR) process is the most widely applied technology for the denitrification of coal-fired power plant flue gases due to its selectivity and high efficiency. In order to attain the optimum design of SCR process, it is required to consider various catalysis characteristics as well as various operating conditions. A systematic study to elucidate the effects of the design conditions(reaction temperature, $NH_3/NO$ mole ratio, space velocity and linear velocity) on the reduction of NOx using the SCR pilot plant with maximum flue gas flow rate of $1,000Nm^3/hr$ was carried out and employed to identify the optimum design parameters. Design approaches of SCR process with test results were also presented.

  • PDF

An Experimental Study on $NO_x$ Reduction Efficiency and $NH_3$ Conversion Efficiency under Various Conditions of Reductant Injection on SCR and AOC (SCR 촉매와 AOC 촉매에서 환원제 분사에 따른 $NO_x$ 저감효율과 $NH_3$ 변환효율에 관한 실험적 연구)

  • Dong, Yoon-Hee;Choi, Jung-Hwang;Cho, Yong-Seok;Lee, Seang-Wock;Lee, Seong-Ho;Oh, Sang-Ki;Park, Hyun-Dae
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.5
    • /
    • pp.85-90
    • /
    • 2010
  • As the environmental regulation of vehicle emission is strengthened, investigations for $NO_x$ and PM reduction strategies are popularly conducted. Two current available technologies for continuous $NO_x$ reduction onboard diesel vehicles are Selective Catalytic Reduction (SCR) using aqueous urea and lean $NO_x$ trap (LNT) catalysts. The experiments were conducted to investigate the $NO_x$ reduction performance of SCR system which can control the ratio of $NO/NO_2$, temperature and SV(space velocity), and the model gas was used which is similar to a diesel exhaust gas. The maximum reduction efficiency is indicated when the $NO:NO_2$ ratio is 1:1 and the SV is 30,000 $h^{-1}$ in $300^{\circ}C$. Generally, ammonia slip from SCR reactors are rooted to incomplete conversion of $NH_3$ over the SCR. In this research, slip was occurred in 6cases (except low SV and $NO:NO_2$ ratio is 1:1) after SCR. Among 6 case of slip occurrence, the maximum conversion efficiency is observed when SV is 60,000 $h^{-1}$ in $400^{\circ}C$.

A Study on Numerical Modeling of the Induced Heat to Gaseous Flow inside the Mixing Area of Ammonia SCR System in Diesel Nox After-treatment Devices (디젤 NOx 후처리 장치에 있어서 암모니아 SCR 시스템 혼합영역 내 가스유동의 유입열 수치모델링에 관한 연구)

  • Bae, Myung-Whan;Syaiful, Syaiful
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.11
    • /
    • pp.897-905
    • /
    • 2008
  • Selective catalytic reduction(SCR) is known as one of promising methods for reducing $NO_x$ emissions in diesel exhaust gases. $NO_x$ emissions react with ammonia in the catalyst surface of SCR system at working temperature of catalyst. In this study, to raise the reacting temperature when the exhaust gas temperature is too low, a heater is located at the bottom of SCR reactor. At an ambient temperature, ammonia is radially injected perpendicular to the exhaust gas flow at inlet pipe and uniformly mixed in the mixing area after being impinged against the wall. To predict the turbulent model inside the mixing area of SCR system, the standard ${\kappa}\;-\;{\varepsilon}$ model is applied. This work investigates numerically the effects of induced heat on the gaseous flow. The results show that the Taylor-$G{\ddot{o}}rtler$ type vortex is generated after the gaseous flow impinges the wall in which these vortices influence the temperature distribution. The addition of heat disturbs the flow structure in bottom area and then stretching flow occurs. Vorticity strand is also formed when heat is continuously increased. Constriction process takes place, however, when a further heat input over a critical temperature is increased and finally forms shed vortex which is disconnected from the vorticity strand. The strong vortex restricts the heat transport in the gaseous flow.

Study on the Performance Characteristics of Urea-SCR System in the ETC Test (ETC 모드에서 Urea-SCR 시스템의 성능 특성 연구)

  • Ham, Yun-Young;Choi, Dong-Seok;Park, Yong-Sung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.122-128
    • /
    • 2010
  • To meet the NOx limit without a penalty of fuel consumption, urea-SCR system is currently regarded as promising NOx reduction technology for diesel engines. SCR system has to achieve maximal NOx conversion in combination with minimal $NH_3$ slip. In this study, the performance characteristics of urea-SCR system with open loop control were assessed in the European Transient Cycle(ETC) for heavy duty diesel engine. The SCR inlet temperaure varied in the range of 200 to $340^{\circ}C$ in the ETC cycle. Open loop control calculated the urea flow rate based on the NOx and NSR map which gave for each combination of SCR inlet temperature and space velocity the normalized $NH_3$ to NOx stoichiometric ratio which resulted in a steady-state $NH_3$ slip of 20ppm. During the ETC cycle, the open loop control with the optimized NSR offset achieved NOx reduction of 80% while keeping the average $NH_3$ slip below 10ppm and maximum 20ppm. It was also found that NOx sensor was cross-sensitive to $NH_3$ and a control strategy for cross-sensitivity compensation was required in order to use a NOx sensor as feedback device.