• Title/Summary/Keyword: Scott-connected transformer

Search Result 5, Processing Time 0.021 seconds

Analysis and compensation of the current unbalance considering dynamic characteristic of feeding traction loads (철도 부하의 동적 특성을 고려한 전류 불평형의 분석과 보상)

  • 김기표;김진오
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.17 no.1
    • /
    • pp.54-60
    • /
    • 2003
  • Feeding traction loads from the public power system may lead to some current and voltage unbalance and consequently affects the operation of its energy-supply system and other equipment connected with it. This paper introduces an analysis of the current unbalance caused by the demands of an electric railway on a public power system. And the results with compensator and without compensator are simulated, and eventually the formula about the current unbalance is suggested. The Scott-connected transformer is adopted in Korea National Railway System. So Scott-connected transformer among the various transformer connection schemes is analyzed in this paper. Also, the formulas about the unbalance and compensating current can be derived by using two parameters(M-phase and T-phase current) of secondary Scott-connected transformer. So, the practical and accurate simulation can be done through dynamic models by using scheduling of traction.

A Study on the Overcurrent Relay Modeling and Protective Coordination for Overload in Domestic AC Electrical Railway System (국내 교류 전기철도 급전계통 보호용 과전류 계전기 모델링 및 과부하 보호 협조에 관한 연구)

  • Kim, Hyun-Dong;Cho, Gyu-Jung;Huh, Seung-Hoon;Kim, Chul-Hwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.7
    • /
    • pp.1121-1127
    • /
    • 2016
  • In this paper, modeling of overcurrent relay(OCR) to protect domestic AC electric railway Auto Transformer(AT) feeding system and operation characteristic analysis on overload condition are described. The target system of this paper is actual site where overload trip of circuit breaker occurs frequently. Because this AT feeding system is made of parallel single track which had a load(electric train) respectively, and is connected with only T phase of Scott Transformer. In addition, this system has been feeding 66kV voltage by KEPCO, not 154kV. We focus on protective coordination of Scott Transformer primary side and secondary side OCR for Korea single track AC electrical railway system in operation currently. We modeled single track AT feeding system and OCR. Also we performed faults and overload analysis for verification of OCR's setting values and system modeling. To analyze above mentioned research, we used PSCAD/EMTDC software tool.

Voltage Unbalance Evaluation in Autotransformer-Fed Electric Railway Systems using Circuit Analysis (회로해석을 이용한 전기철도 급전시스템의 전압불평형 평가)

  • 오광해;차준민
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.4
    • /
    • pp.20-28
    • /
    • 1998
  • This study proposes a new method to estimate voltage unbalance more exactly using Thevenin's equivalent circuit. The conventional simple formula were easily applied to evaluate voltage unbalance. Because the formula was derived on the assumption that traction load would be directly connected to the secondary windings of the main transformer, they could not consider the detailed characteristics of traction power supply system, for example, self and mutual impedances of rail, catenary and return feeder. So, the ac쳐racy of the results could not be guaranteed. The proposed algorithm is applied to a standard autotransformer-fed test system to analyze unbalance phenomena. Through simulations, we could evaluate voltage and current unbalance factors and compare the voltage unbalance of the three transformer connection schemes : single phase, V- and Scott-connections which are required for suitable train operation schedules. Additionally, we could determine the combinations of trains which can be operated under the unbalance factor limits.

  • PDF

Application of Multi-Level Inverter for Improvement of Power Quality in AC 25[kV] Electrified Railway System (교류전기철도 전력품질 향상을 위한 직.병렬 보상장치 적용에 관한 연구)

  • Park, Soo-Cheol;Song, Joong-Ho;Chang, Sang-Hoon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.21 no.1
    • /
    • pp.131-141
    • /
    • 2007
  • This paper proposes analysis on new equipment for power quality in electric railway. The proposed equipment consists of series inverter and parallel inverter. Each inverter is connected by capacitor as dc link. This structure can be compensated for active and reactive power in catenary through transformer. We verified the proposed equipment using the PSCAD/EMTDC and the calculation results from the proposed approach are widely described in the paper.

Power Compensator Control for Improving Unbalanced Power of AC Electric Railway (교류전기철도 불평형 전력 개선을 위한 전력보상장치 제어)

  • Woo, Jehun;Jo, Jongmin;Lee, Tae-Hoon;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.25 no.3
    • /
    • pp.213-218
    • /
    • 2020
  • In this study, we propose a control algorithm to reduce the unbalanced characteristics of a three-phase system power caused by the unbalanced load of the AC electric railway. Then, we verify its performance through the design of a power compensator and experiments applying it. Like electric railway systems, a Scott transformer is applied, and the load and single-phase back-to-back converters are connected to the M-phase and T-phase outputs. The back-to-back converter monitors the difference in active power between the unbalanced loads in real-time and compensates for the power by using bidirectional characteristics. The active power is performed through PI control in the synchronous coordinate system, and DC link overall voltage and voltage balancing control are controlled jointly by M-phase and T-phase converters to improve the responsiveness of the system. To verify the performance of the proposed power compensation device, an experiment was performed under the condition that M-phase 5 kW and T-phase 1 kW unbalanced load. As a result of the experiment, the unbalance rate of the three-phase current after the operation of the power compensator decreases by 58.66% from 65.04% to 6.38%, and the excellent performance of the power compensator proposed in this study is verified.