• Title/Summary/Keyword: Score method

Search Result 4,595, Processing Time 0.039 seconds

이변량 음이항 모형에서 붓스트랩 방법을 이용한 과대산포에 대한 검정 (Testing for Overdispersion in a Bivariate Negative Binomial Distribution Using Bootstrap Method)

  • 전명식;정병철
    • 응용통계연구
    • /
    • 제21권2호
    • /
    • pp.341-353
    • /
    • 2008
  • 본 연구에서는 이변량 음이항 분포에서 과대산포와 "내재적 상"의 존재유무에 대한 가설검정 문제를 다루었다. 과대산포에 대한 스코어 검정의 표준정규분포 근사는 명목 유의수준을 과소추정한 반면 "내재적 상"에 대한 스코어 검정은 명목유의수준을 과대 추정하고 있음을 보였다. 본 연구에서는 이와 같은 스코어 검정의 표준정규분포 근사의 문제점을 해결하기 위하여 붓스트랩 방법을 제안하였다. 스코어 검정에 대한 붓스트랩 방법은 두 검정에서 명목유의수준을 제대로 유지하고 검정력도 높게 나타나 스코어 검정의 표준정규분포 근사에 존재하는 문제를 해결하는 효율적인 대안으로 판단된다.

부산자유무역지역 입지선정 검증 -선호판별점수접근- (An Examination of Location Choice for Free Trade Zone in Busan: the Preference Discrimination Score Approach)

  • 박노경;박길영
    • 한국항만경제학회지
    • /
    • 제21권3호
    • /
    • pp.19-34
    • /
    • 2005
  • The purpose of this paper is to introduce the new way of location choice for free trade zone in Busan area by using Obata and Ishii(2003) model of preference discrimination score. And also, this paper investigates the result of Choi, Bong-ho(200l) that deals with the choice of tariff free area in Busan area. Empirical main results are as follows: First, the North Port(Sinsundae)and the New Busan Port are efficient. Final winer of location choice for free trade zone is the North Port(Sinsundae). Second, the ranking result of this paper for 10 potential sites of free trade zone shows the almost similar to that of Choi, Bong-ho(200l). Policy planner for location choice of free trade zone should introduce the preference discrimination score method by Obata and Ishii(2003), because this method shows the very positive empirical results like questionaire method by expert groups and common people in Busan which should cause the much time and much money.

  • PDF

No-Reference Image Quality Assessment based on Quality Awareness Feature and Multi-task Training

  • Lai, Lijing;Chu, Jun;Leng, Lu
    • Journal of Multimedia Information System
    • /
    • 제9권2호
    • /
    • pp.75-86
    • /
    • 2022
  • The existing image quality assessment (IQA) datasets have a small number of samples. Some methods based on transfer learning or data augmentation cannot make good use of image quality-related features. A No Reference (NR)-IQA method based on multi-task training and quality awareness is proposed. First, single or multiple distortion types and levels are imposed on the original image, and different strategies are used to augment different types of distortion datasets. With the idea of weak supervision, we use the Full Reference (FR)-IQA methods to obtain the pseudo-score label of the generated image. Then, we combine the classification information of the distortion type, level, and the information of the image quality score. The ResNet50 network is trained in the pre-train stage on the augmented dataset to obtain more quality-aware pre-training weights. Finally, the fine-tuning stage training is performed on the target IQA dataset using the quality-aware weights to predicate the final prediction score. Various experiments designed on the synthetic distortions and authentic distortions datasets (LIVE, CSIQ, TID2013, LIVEC, KonIQ-10K) prove that the proposed method can utilize the image quality-related features better than the method using only single-task training. The extracted quality-aware features improve the accuracy of the model.

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.

간호사의 소극적 안락사에 대한 태도 조사 (The Study of Attitude to Passive Euthanasia among Korean Nurses)

  • 김애경
    • 기본간호학회지
    • /
    • 제9권1호
    • /
    • pp.76-85
    • /
    • 2002
  • Purpose: This study has been designed to identify attitudes to euthanasia held by Korean nurses. Method: Data were collected through a survey, and the participants in the study were 234 Korean nurses. Convenience sampling method was used and analysis of the data was done with SPSS PC for descriptive statistics, t-test and ANOVA. Results : 1. The mean score for euthanasia was 2.80. and the sub dimension mean scores were, patients' rights. 3.24, quality of life, 2 78, respect for life, 2.68, medical ethics, 2.50. 2. With respect to the general characteristics of participants there were statistically significant difference in total score according to religion (P= .01), and degree of influence of religion on behavior (P= .00). 3. There were statistically significant difference in score of quality of life according to religion (P= .04), degree of influence of religion on behavior (P= 00), decisions in euthanasia (P=.04), and legal permission (P= .04). 4. There was statistically significant difference in score of patient's right according to legal permission (P = .04). 5 There were statistically significant difference in the score of respect for life according to religion (P= .00), degree of influence of religion on behavior (P= .00), decision in euthnasia (P= .00), and legal permission (P= .00).

  • PDF

상완골 근위부 골절에 시행한 긴장 대 봉합을 동반한 관혈적 골수강내 고정술 (Open Intramedullary Nail with Tension Band Sutures on Proximal Humeral Fracture)

  • 박진영;안진우;이성철
    • Clinics in Shoulder and Elbow
    • /
    • 제6권2호
    • /
    • pp.149-160
    • /
    • 2003
  • Purpose: to determine the results after open intramedullary nailing and tension band suture technique in proximal humerus fracture for improving the stability and decreasing the complications. Materials and Method: Authors reviewed 27 patients treated by open intramedullary nailing and tension band suture technique. Mean follow-up period was 39 months (24-59months). Surgical neck fracture were 6 cases, surgical neck fracture with shaft fracture were 3 cases, three part fracture with greater tuberosity fracture were 17 cases, four part fracture was 1 case and fracture and dislocation were 2 cases Results: We got the bony union in 26 cases. Average pain scale was 1 point (0-6), Neer score was 86 point(45-99) and ASES score was 85 point(40-100). We separate all cases in two groups based on age (65 years), L-spine t-score (-2.5) and Neer classification (2 and 3 part). There is no significance in pain scale, Neer score and ASES score between each group. Conclusion: As a method of surgical treatment on severe proximal humeral fractures, we recommend intramedullary nailing and tension band suture technique and it may have particular advantages in early exercise and satisfactory functional outcome.

확률기상예보를 이용한 중장기 ESP기법 개선 (Improvement of Mid/Long-Term ESP Scheme Using Probabilistic Weather Forecasting)

  • 김주철;김정곤;이상진
    • 한국수자원학회논문집
    • /
    • 제44권10호
    • /
    • pp.843-851
    • /
    • 2011
  • 수문학 분야에서 중장기 유출량 예측은 입력변수의 불확실성 등으로 인하여 확률론적 방법을 사용하는 것이 바람직한 것으로 알려져 왔다. 본 연구에서는 금강유역을 대상으로 구성된 바 있는 RRFS-ESP 시스템에 PDF-ratio 방법을 기반으로한 사전처리기능을 장착하여 보다 효율적인 중장기 예측시스템으로의 확장을 시도하여 보았다. 이를 위하여 기상청에서 제공하는 확률기상정보를 이용하여 가중치를 산정하고 이를 기반으로 시나리오별 예측확률을 갱신하였다. 예측결과에 대하여 각 기법별 예측점수를 산정하여 본 결과 우선 ESP 기법에 의한 예측점수의 평균이 초보예측 점수를 상회하여 본 연구에서 구성한 RRFS-ESP 시스템의 적용성을 확인할 수 있었다. 또한 확률기상전망을 이용하여 갱신한 유입량 시나리오의 예측점수가 ESP 기법에 의한 예측점수를 상회하고 있음을 확인할 수 있어 ESP 기법에 의한 예측결과를 확률기상전망을 이용하여 갱신할 경우 예측 정확도를 보다 개선시킬 수 있음을 확인할 수 있었다.

한국어 구 단위화를 위한 규칙 기반 방법과 기억 기반 학습의 결합 (A Hybrid of Rule based Method and Memory based Loaming for Korean Text Chunking)

  • 박성배;장병탁
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권3호
    • /
    • pp.369-378
    • /
    • 2004
  • 한국어나 일본어와 같이 부분 어순 자유 언어에서는 규칙 기반 방법이 구 단위화에 있어서 매우 유용한 방법이며, 실제로 잘 발달된 조사와 어미를 활용하면 소수의 규칙만으로도 여러 가지 기계학습 기법들만큼 높은 성능을 보일 수 있다. 하지만, 이 방법은 규칙의 예외를 처리할 수 있는 방법이 없다는 단점이 있다. 예외 처리는 자연언어처리에서 매우 중요한 문제이며, 기억 기반 학습이 이 문제를 효과적으로 다룰 수 있다. 본 논문에서는, 한국어 단위화를 위해서 규칙 기반 방법과 기억 기반 학습을 결합하는 방법을 제시한다. 제시된 방법은 우선 규칙에 기초하고, 규칙으로 추정한 단위를 기억 기반 학습으로 검증한다. STEP 2000 말뭉치에 대한 실험 결과, 본 논문에서 제시한 방법이 규칙이나 여러 기계학습 기법을 단독으로 사용하였을 때보다 높은 성능을 보였다. 규칙과 구 단위화에 가장 좋은 성능을 보인 Support Vector Machines의 F-score가 각각 91.87과 92.54인데 비하여, 본 논문에서 제시된 방법의 최종 F-score 는 94.19이다.

웹 사이트 이용 고객의 행동 정보를 기반으로 한 고객 선호지수 산출 방법 (Method for Preference Score Based on User Behavior)

  • 서동렬;김두진;윤정기;김재훈;문강식;오재훈
    • CRM연구
    • /
    • 제4권1호
    • /
    • pp.55-68
    • /
    • 2011
  • 최근 웹 서비스의 발달과 함께 웹 컨텐츠를 다양하게 활용함으로써, 사용자의 경험을 기반으로 한 개인화 분석이 주목 받고 있다. 기존의 개인화 분석은 주로 데이터베이스의 데이터를 활용한 규칙 및 통계 모형을 기준으로 수행되고 있다. 이에 시장조사 소요기간에 따른 적시성을 반영하는데 어려움이 있었으며, 데이터베이스 적재 데이터가 고객 행동에 대한 결과였기 때문에 고객의 이용 특성을 반영하는데 한계가 지적되어 왔다. 그러나, 최근 고객의 사이트 방문에서부터 방문을 종료할 때까지의 모든 행동을 추적하고 분석하여 개인화된 서비스를 제공하기 위한 많은 연구와 상용화된 기술 개발이 진행되었다. 본 연구에서는 온라인상에서의 고객 행동을 웹 로그 분석을 이용하여 분석함으로써 고객의 행동정보를 U-Score(Usage Score, 이용지수), P-Score(Preference Score, 선호지수), M-Score(Mania Score, 마니아지수) 등 다양한 고객 선호지수를 도출하였다. 이러한 고객의 선호지수를 통해 웹 컨텐츠에 대한 고객의 선호정보를 파악함으로써, 고객에 대한 심도 있는 리포팅과 고객관계관리가 가능하며 개인화 추천 서비스에 유용하게 사용할 수 있다.

  • PDF

대입수능 선택과목 점수조정을 위한 선형계획모형 개발 및 활용 (A Linear Programming Model to the Score Adjustment among the CSAT Optional Subjects)

  • 남보우
    • 경영과학
    • /
    • 제28권1호
    • /
    • pp.141-158
    • /
    • 2011
  • This study concerns with an applicability of the management science approach to the score adjustment among the College Scholastic Aptitude Test(CSAT) optional subjects. A linear programming model is developed to minimize the sum of score distortions between optional subjects. Based on the analysis of the 377,089 CSAT(2010) applicants' performances in social science test section, this study proposes a new approach for the score equating or linking method of the educational measurement theory. This study makes up for the weak points in the previous linear programming model. First, the model utilize the standard score which we can get. Second, the model includes a goal programming concept which minimizes the gap between the adjusting goal and the result of the adjustment. Third, the objective function of the linear programing is the weighted sum of the score distortion and the number of applicants. Fourth, the model is applied to the score adjustment problem for the whole 11 optional subjects of the social science test section. The suggested linear programming model is a generalization of the multi-tests linking problem. So, the approach is consistent with the measurement theory for the two tests and can be applied to the optional three or more tests which do not have a common anchor test or a common anchor group. The college admission decision with CSAT score can be improved by using the suggested linear programming model.