• Title/Summary/Keyword: Scientific study of Korean traditional ceramics

Search Result 5, Processing Time 0.019 seconds

A Quarter Century of Scientific Study on Korean Traditional Ceramics Culture: From Mounds of Waste Shards to Masterpieces of Bisaek Celadon

  • Choo, Carolyn Kyongshin Koh
    • Conservation and Restoration of Cultural Heritage
    • /
    • v.1 no.1
    • /
    • pp.39-48
    • /
    • 2012
  • The first twenty-five years of scientific study within Korea on Korean traditional ceramics has been characterized as a bridging effort to understand the rich field of artistic ceramic masterpieces on one hand with analytic results gained from mounds of broken shards and kiln wastes on the other. First shard pieces were collected directly from the waste mounds, but most of the analyzed shards were provided by art historians and museum staffs directly involved in systematic excavations. The scientific study is viewed as one of many complimentary ways in learning about the multi-faceted ceramics culture, ultimately connecting human spirits and endeavors from the past to the present to the future. About 1350 pieces of analyzed shards have been so far collected and organized according to the production location and time period. From the experimental results of the analysis, the compositional and microstructural characteristics of bodies and glazes have been deduced for many kiln sites of Goryeo and Joseon dynasties. Except for a few local kilns, porcelain stone was used as body material in both dynasties. The principle of mixing a clay component with a flux material was used in Korean glazes as was in China. The clay component different from body clay was often used early on. In Gangjin a porcelain material appropriate for whiteware body was mixed for celadon glaze, and in Joseon Gwangju kilns glaze stone was chief clay material. The use of wood ash persisted in Korea even in making buncheong glazes, but in Joseon whitewares burnt lime and eventually crushed lime were used as flux material.

A Study of the Chemical Composition of Korean Traditional Ceramics (I): Celadon and Kory$\v{o}$ Whiteware (한국 전통 도자기의 화학 조성에 대한 연구 (I): 고려청자와 고려백자)

  • Koh, Kyong-Shin Carolyn;Choo, Woong-Kil;Ahn, Sang-Doo;Lee, Young-Eun;Kim, Gyu-Ho;Lee, Yeon-Sook
    • Journal of Conservation Science
    • /
    • v.26 no.3
    • /
    • pp.213-228
    • /
    • 2010
  • The composition of Chinese ceramic shards has been the subject of analysis in Europe, beginning in the 18th century, and in China from the 1950s. Scientific studies of traditional Korean shards commenced in the United States and Germany in the 1980s, and studies within Korea began in the 1990s. From analysis of a large systematically collected dataset, the composition of porcelain produced during the Kory. dynasty, including 21 celadon and 10 whiteware groups, was characterized and compared with that of Chinese ceramics. The average composition of the body and glaze of several shards (usually three to five) from each group was determined, enabling comparisons between groups. The results show that the majority of groups were derived from mica-quartz porcelain stone, which was commonly used in Yuezhou, Jingdezhen, and other southern Chinese kilns. The composition of glazes includes clay and flux components; the latter were typically wood ash and limestone, initially as burnt but later as crushed forms. The earliest of the Kangjin glazes contained substantially less titanium oxide than did the Yuezhou glazes, which were typically formulated from body material and wood ash. The present study provides a comparative framework for the growing number of analytical investigations associated with excavations occurring in Korea.

An Archaeochemical Microstructural Study on Koryo Inlaid Celadon

  • Ham, Seung-Wook;Shim, Il-wun;Lee, Young-Eun;Kang, Ji-Yoon;Koh, Kyong-Shin
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.11
    • /
    • pp.1531-1540
    • /
    • 2002
  • With the invention of the inlaying technique for celadon in the latter half of the 12th century, the Koryo potters reached a new height of artistic and scientific achievement in ceramics chemical technology. Inlaid celadon shards, collected in 1991 during the surface investigation of Kangjin kilns found on the southwestern shore of South Korea, were imbedded in epoxy resin and polished for cross-section examination. Backscattered electron images were taken with an electron microprobe equipped with an energy dispersive spectrometer. The spectrometer was also used to determine the composition of micro-areas. Porcelain stone, weathered rock of quartz, mica, and feldspar composition were found to be the raw material for the body and important components in the glaze and white inlay. The close similarity between glaze and black inlay in the microstructure suggests that the glaze material was modified by adding clay with high iron content, such as biotite, for use as black inlay. The deep soft translucent quality of celadon glaze is brought about by its microstructure of bubbles, remnant and devitrified minerals, and the schlieren effect.

A Microstructural Study on Firing Process of Korean Traditional Ceramics;Punch'ong from Ch'unghyodong, Kwangju (한국 전통 도자기의 번조 공정에 관한 미세구조 연구;광주 충효동 분청사기를 중심으로)

  • Lee, Yeong Eun;Go, Gyeong Sin
    • Journal of the Korean Chemical Society
    • /
    • v.46 no.2
    • /
    • pp.125-138
    • /
    • 2002
  • The kiln at Chollanamdo Kwangjusi Ch'unghyodong, which produced punch'ong and white wares for a period of 70 to 80 years in the 15th century, is examined for their scientific technological param-eters. Punch'ong sherds were divided into seven different groups according to the location and the layer of the waste mounds from which they were excavated. Optical and scanning electron microscope were used for microstructural observations and X-ray diffraction and polarized microscope for mineral characteristics. For determining the firing temperature, sherds were refired at different temperatures and their micro-structural changes were observed. Some wares such as the group CHE2 was high quality wares fired at high emperature around 1200$^{\circ}C$ for palace use, but as the ceramics ware became more widely used and the white wares increasingly preferred over punch'ong, lower quality wares of rougher raw materials were firedat lower temperatures around 1100-1150$^{\circ}C$ in quantity. They used local raw materials of several types, all available locally.