• Title/Summary/Keyword: Scientific Visualization

Search Result 145, Processing Time 0.024 seconds

A study on the development of the tabletop tiled display system and its application for high-resolution visualization (고해상도 가시화를 위한 테이블탑 타일드 디스플레이 시스템 개발 및 적용에 관한 연구)

  • Park, Kyoung-Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.2079-2087
    • /
    • 2009
  • This paper describes the iTABLE tabletop tiled display system which is designed for displaying high-resolution scientific visualization. Unlike other tabletop systems that typically use a projection-based single display, iTABLE system is suitable for visualizing and sharing high-resolution data, and it is capable of facilitating group interaction with interactive data visualizations on a table and distributed collaborative visualizations with other tiled displays. First, it surveys prior works on tabletop and tiled display systems as well as scientific visualization, and it describes the design and implementation of iTABLE system, and middleware and an infrared camera-based tangible user interface designed for iTABLE system. It will then discuss some high-resolution scientific visualization applications developed for iTABLE followed by conclusions and future research directions.

Scientific and Technical Visualization for Ocean Process Simulations (해양과정시뮬레이션의 과학기술적가시화)

  • Choi Byung Ho
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.1-10
    • /
    • 1999
  • This paper briefly introduces the work done up to 1998 during the past twenty years for numerical modeling of ocean process focussing on the neighbouring seas of Korean Peninsula. Modeling of global ocean dynamics has also been performed as a pathway to understand the regional ocean dynamics. The ocean simulation produces a vast amount of multidimensional multivariate dataset therefore adoption of scientific and technical visualization techniques were essential to properly understand the physics involved.

  • PDF

A Study on 3D File Format for Web-based Scientific Visualization

  • Lee, Geon-hee;Nam, Jeong-hwan;Han, Hwa-seop;Kwon, Soon-chul
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.1
    • /
    • pp.243-247
    • /
    • 2019
  • The most commonly used 3D modeling file formats are OBJ (Wavefront file format specification) and STL (STereoLithography). Although they have a common point of view in 3D on the screen, detailed functions are different according to purpose of development. OBJ is the most commonly used 3D file format and STL is mainly used as 3D file format for 3D printing. However, in the field of Scientific Visualization, precise analysis is required. There is a difference in accuracy depending on the type of 3D file format. OBJ and STL are not suitable for delicate surface description because they form meshes in the form of triangular polygons. And if you increase the number of triangle polygons, it will be smoother, but the file size also increases exponentially and causes excessive CPU usage. In contrast, VTK provides a variety of polygon structures, including triangular polygons as well as rectangular polygons and cube polygons. Thus, delicate surface depiction is possible. Delicate surface rendering is possible and file size is not large. This paper describes the concept and structure of VTK. We also compared the load times and file sizes between VTK, STL, and OBJ in the Chrome browser. In addition, the difference in surface rendering ability between VTK, STL, and OBJ is intuitively viewed based on the screen in which each 3D file format is implemented under the same conditions. This study is expected to be helpful for efficient 3D file format for precise implementation of Web - based Scientific Visualization.

Development of 3D Visualization Technology for Meteorological Data (기상자료 3차원 가시화 기술개발 연구)

  • Seo In Bum;Joh Min Su;Yun Ja Young
    • Journal of the Korean Society of Visualization
    • /
    • v.1 no.2
    • /
    • pp.58-70
    • /
    • 2003
  • Meteorological data contains observation and numerical weather prediction model output data. The computerized analysis and visualization of meteorological data often requires very high computing capability due to the large size and complex structure of the data. Because the meteorological data is frequently formed in multi-variables, 3-dimensional and time-series form, it is very important to visualize and analyze the data in 3D spatial domain in order to get more understanding about the meteorological phenomena. In this research, we developed interactive 3-dimensional visualization techniques for visualizing meteorological data on a PC environment such as volume rendering, iso-surface rendering or stream line. The visualization techniques developed in this research are expected to be effectively used as basic technologies not only for deeper understanding and more exact prediction about meteorological environments but also for scientific and spatial data visualization research in any field from which three dimensional data comes out such as oceanography, earth science, and aeronautical engineering.

  • PDF

Development of 3D Visualization Technology for Meteorological Data Using IDL (IDL을 이용한 기상자료 3 차원 가시화 기술개발 연구)

  • Joh Min-su;Yun Ja-Young;Seo In-Bum
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2002.11a
    • /
    • pp.77-80
    • /
    • 2002
  • The recent 3D visualization such as volume rendering, iso-surface rendering or stream line visualization gives more understanding about structures or distribution of data in a space and, moreover, the real-time rendering of a scene enables the animation of time-series data. Because the meteorological data is frequently formed as multi-variables, 3-dimensional and time-series data, the spatial analysis, time-series analysis, vector display, and animation techniques can do important roles to get more understanding about data. In this research, our aim is to develop the 3-dimensional visualization techniques for meteorological data in the PC environment by using IDL. The visualization technology from :his research will be used as basic technology not only for the deeper understanding and the more exact prediction about meteorological environments but also for the scientific and spatial data visualization research in any field from which three-dimensional data comes out such as oceanography, earth science, or aeronautical engineering.

  • PDF

Use of Visual Digital Media to Develop Creativity: The Example of Video Games

  • V., Zabolotnyuk;S., Khrypko;I., Ostashchuk;D., Chornomordenko;A., Timchenko;T., Motruk;K., Pasko;O., Lobanchuk
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.12
    • /
    • pp.13-18
    • /
    • 2022
  • In the post-information era, most of technologies have a visual part, or at least some functions related to visualization. It is also one of the popular means of presenting materials in education area. However, despite its popularity, the impact of visualization on the effectiveness of learning still remains controversial. Even more controversial is its usefulness in developing creativity, which is one of the most important skills for today's employee. The authors considered the use of visualization as a tool for the development of children's creativity on the example of learning video games, in particular, ClassCraft to distinguish features that, from the point of view of psychology, may lead to developing creativity even being not useful for educational purposes. It is concluded that video games useful for learning may have features, that are inappropriate in formal educational context, but important to develop creative thinking.

VISUALIZATION OF 3D DATA PRESERVING CONVEXITY

  • Hussain Malik Zawwar;Hussain Maria
    • Journal of applied mathematics & informatics
    • /
    • v.23 no.1_2
    • /
    • pp.397-410
    • /
    • 2007
  • Visualization of 2D and 3D data, which arises from some scientific phenomena, physical model or mathematical formula, in the form of curve or surface view is one of the important topics in Computer Graphics. The problem gets critically important when data possesses some inherent shape feature. For example, it may have positive feature in one instance and monotone in the other. This paper is concerned with the solution of similar problems when data has convex shape and its visualization is required to have similar inherent features to that of data. A rational cubic function [5] has been used for the review of visualization of 2D data. After that it has been generalized for the visualization of 3D data. Moreover, simple sufficient constraints are made on the free parameters in the description of rational bicubic functions to visualize the 3D convex data in the view of convex surfaces.

Multi-gigabyte Multimedia Collections Using Qis Visualization Spreadsheet

  • 지승현
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.207-214
    • /
    • 2004
  • The Qis visualizational spreadsheet environment is shown to be extremely effective in supporting the visualization of multi-gigabyte multi-dimensional data sets. The Qis has a novel framestack that is the 3-D arrangement of spreadsheet elements. It enables the visualization spreadsheet to effectively manage, rapidly organize, and compactly encapsulate multi-dimensional data sets for visualization. Using several experiments with scientific users, the Qis has been demonstrated to be a highly interactive visual browsing tool for the analysis o( multidimensional data, displaying 2-D 3-D graphics, and rendering in each frame of the spreadsheet.

  • PDF

VRSMS: VR-based Sensor Management System (VRSMS: 가상현실 기반 센서 관리 시스템)

  • Kim, Han-Soo;Kim, Hyung-Seok
    • Journal of the HCI Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.1-8
    • /
    • 2008
  • We introduce VRSMS(VR-based sensor management system) which is the visualization system of micro-scale air quality monitoring system Airscope[3]. By adopting VR-based visualization method, casual users can get insight of air quality data intuitively. Users can also manipulate sensors in VR space to get specific data they needed. For adaptive visualization, we separated visualization and interaction methods from air quality data. By separation, we can get consistent way for data access so new visualization and interaction methods are easily attached. As one of the adaptive visualization method, we constructed large display system which consists of several small displays. This system can provide accessibility for air quality data to people one public space.

  • PDF