• Title/Summary/Keyword: Science assessment framework

Search Result 281, Processing Time 0.025 seconds

Development of a Probabilistic Safety Assessment Framework for an Interim Dry Storage Facility Subjected to an Aircraft Crash Using Best-Estimate Structural Analysis

  • Almomani, Belal;Jang, Dongchan;Lee, Sanghoon;Kang, Hyun Gook
    • Nuclear Engineering and Technology
    • /
    • v.49 no.2
    • /
    • pp.411-425
    • /
    • 2017
  • Using a probabilistic safety assessment, a risk evaluation framework for an aircraft crash into an interim spent fuel storage facility is presented. Damage evaluation of a detailed generic cask model in a simplified building structure under an aircraft impact is discussed through a numerical structural analysis and an analytical fragility assessment. Sequences of the impact scenario are shown in a developed event tree, with uncertainties considered in the impact analysis and failure probabilities calculated. To evaluate the influence of parameters relevant to design safety, risks are estimated for three specification levels of cask and storage facility structures. The proposed assessment procedure includes the determination of the loading parameters, reference impact scenario, structural response analyses of facility walls, cask containment, and fuel assemblies, and a radiological consequence analysis with dose-risk estimation. The risk results for the proposed scenario in this study are expected to be small relative to those of design basis accidents for best-estimated conservative values. The importance of this framework is seen in its flexibility to evaluate the capability of the facility to withstand an aircraft impact and in its ability to anticipate potential realistic risks; the framework also provides insight into epistemic uncertainty in the available data and into the sensitivity of the design parameters for future research.

Developing a Framework of Conceptual Understandings of Earth Systems

  • Nam, Younkyeong
    • Journal of the Korean earth science society
    • /
    • v.37 no.5
    • /
    • pp.309-322
    • /
    • 2016
  • This paper presents an analytical framework of Conceptual Understandings of Earth Systems (CUES) that shows a relationship between disciplinary knowledge of Earth systems and the specific thinking skills required to understand that knowledge. This framework is developed through an extensive literature review of students' and teachers' understandings of earth systems concepts and systems thinking in earth science context. This study first presents the categories of disciplinary knowledge of Earth systems, Earth System Knowledge (ESK). This study then illustrates a relationship between categories of ESK and the ontological categories (Matter, Process, Systems) that has been used to study students' conceptual understandings of Earth systems. Finally, this study presents the CUES framework to show the relationship between disciplinary knowledge and thinking skills. The implications of using this framework for curriculum development, assessment, and teacher education and ESS research are discussed.

The Development of Assessment Tools to Measure Scientific Creative Problem Solving ability for Middle School Students (중학생의 과학 창의적 문제 해결 능력을 측정하기 위한 도구 개발)

  • Park, In-Suk;Kang, Soon-Hee
    • Journal of The Korean Association For Science Education
    • /
    • v.32 no.2
    • /
    • pp.210-235
    • /
    • 2012
  • The purpose of this study was to develop a valid and reliable assessment tool for measuring scientific creative problem solving ability for middle school students. To achieve this aim, an assessment framework, four assessment items, and detailed rubrics for scientific creative problem solving were developed. The assessment framework had three dimensions (i.e. science contents, inquiry process, and thinking skills) and sub-elements for each dimension. The assessment items were tested with 320 middle school students in order to determine reliability, difficulty, and item discrimination. Science teachers and experts in science education checked the validity of the items and the rubrics. The results proved that the assessment tool was reliable enough to evaluate students' scientific creative problem solving skills.

TREATING UNCERTAINTIES IN A NUCLEAR SEISMIC PROBABILISTIC RISK ASSESSMENT BY MEANS OF THE DEMPSTER-SHAFER THEORY OF EVIDENCE

  • Lo, Chung-Kung;Pedroni, N.;Zio, E.
    • Nuclear Engineering and Technology
    • /
    • v.46 no.1
    • /
    • pp.11-26
    • /
    • 2014
  • The analyses carried out within the Seismic Probabilistic Risk Assessments (SPRAs) of Nuclear Power Plants (NPPs) are affected by significant aleatory and epistemic uncertainties. These uncertainties have to be represented and quantified coherently with the data, information and knowledge available, to provide reasonable assurance that related decisions can be taken robustly and with confidence. The amount of data, information and knowledge available for seismic risk assessment is typically limited, so that the analysis must strongly rely on expert judgments. In this paper, a Dempster-Shafer Theory (DST) framework for handling uncertainties in NPP SPRAs is proposed and applied to an example case study. The main contributions of this paper are two: (i) applying the complete DST framework to SPRA models, showing how to build the Dempster-Shafer structures of the uncertainty parameters based on industry generic data, and (ii) embedding Bayesian updating based on plant specific data into the framework. The results of the application to a case study show that the approach is feasible and effective in (i) describing and jointly propagating aleatory and epistemic uncertainties in SPRA models and (ii) providing 'conservative' bounds on the safety quantities of interest (i.e. Core Damage Frequency, CDF) that reflect the (limited) state of knowledge of the experts about the system of interest.

Framework of Health Recommender System for COVID-19 Self-assessment and Treatments: A Case Study in Malaysia

  • Othman, Mahfudzah;Zain, Nurzaid Muhd;Paidi, Zulfikri;Pauzi, Faizul Amir
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.12-18
    • /
    • 2021
  • This paper proposes a framework for the development of the health recommender system, designed to cater COVID-19 symptoms' self-assessment and monitoring as well as to provide recommendations for self-care and medical treatments. The aim is to provide an online platform for Patient Under Investigation (PUI) and close contacts with positive COVID-19 cases in Malaysia who are under home quarantine to perform daily self-assessment in order to monitor their own symptoms' development. To achieve this, three main phases of research methods have been conducted where interviews have been done to thirty former COVID-19 patients in order to investigate the symptoms and practices conducted by the Malaysia Ministry of Health (MOH) in assessing and monitoring COVID-19 patients who were under home quarantine. From the interviews, an algorithm using user-based collaborative filtering technique with Pearson correlation coefficient similarity measure is designed to cater the self-assessment and symptoms monitoring as well as providing recommendations for self-care treatments as well as medical interventions if the symptoms worsen during the 14-days quarantine. The proposed framework will involve the development of the health recommender system for COVID-19 self-assessment and treatments using the progressive web application method with cloud database and PHP codes.

Application of Probabilistic Health Risk Analysis in Life Cycle Assessment -Part I : A General Framework for Uncertainty and Variability Analysis of Health Risk in Life Cycle Assessment (전과정평가에 있어 확률론적 건강영향분석기법 적용 -Part I : 전과정평가에 있어 확률론적 위해도 분석기법 적용방안에 관한 연구)

  • Choi, Kwang-Soo;Park, Jae-Sung
    • Journal of Environmental Impact Assessment
    • /
    • v.9 no.3
    • /
    • pp.185-202
    • /
    • 2000
  • Uncertainty and variability in Life Cycle Assessment(LCA) have been significant key issues in LCA methodology with techniques in other research area such as social and political science. Variability is understood as stemming from inherent variations in the real world, while uncertainty comes from inaccurate measurements, lack of data, model assumptions, etc. Related articles in this issues were reviewed for classification, distinguish and elaboration of probabilistic/stochastic health risk analysis application in LCA. Concept of focal zone, streamlining technique, scenario modelling and Monte Carlo/Latin Hypercube risk analysis were applied to the uncertainty/variability analysis of health risk in LCA. These results show that this general framework of multi-disciplinary methodology between probabilistic health risk assessment and LCA was of benefit to decision making process by suppling information about input/output data sensitivity, health effect priority and health risk distribution. There should be further research needs for case study using this methodology.

  • PDF

Comprehensive Comparative Assessment of National Energy and Power Systems

  • Kim, Tae-Woon;Ha, J.J.;Lee, Sung-Jin;Chang, Soon-H.;Kim, Seong-Ho
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 2004.10a
    • /
    • pp.1459-1460
    • /
    • 2004
  • An AHP-based framework for comprehensive comparison of several power technologies haas been developed. A questionnaire has been designed and is about to surveyed for extracting boty weight vectors and subjective evaluation values. The attitude of evaluator groups will be incorporated into these two types of quantification.

  • PDF

Initial Risk Assessment System of Pesticides - A case study of captan, paraquat dichloride, and glyphosate - (농약의 초기위해성평가체계에 관한 연구 - Captan, Paraquat dichloride, Glyphosate에 대한 Case study -)

  • Lee, Yong-Ju;Kim, Kyun;Kim, Yong-Hwa
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.3
    • /
    • pp.214-220
    • /
    • 2005
  • Initial Risk assessments using physicochemical properties and acute toxicity are conducted to provide information for managers to decide the potential adverse effects and played as a tool for decision-making in development of new substances. In this study, we built initial risk assessment framework and carried out human and ecology initial risk assessment for three different pesticides of captan, glyphosate, and paraquat dichloride to confirm our framework. Two water estimation models of GENEEC (GENeric Estimated Environmental Concentration) and FOCUS (FOrum for the Co-ordination of pesticide models and their USe) were employed for pesticides exposure assessment. Application for paraquat dichloride and glyphosate uses shows very low human and ecology risk. On the other hand, high acute ecological risk was observed from the application for captan. These results showed good agreements with the U.S. EPA RED (Reregistration Eligibility Decision) reports verifying the framework of this study.

Dynamic reliability analysis framework using fault tree and dynamic Bayesian network: A case study of NPP

  • Mamdikar, Mohan Rao;Kumar, Vinay;Singh, Pooja
    • Nuclear Engineering and Technology
    • /
    • v.54 no.4
    • /
    • pp.1213-1220
    • /
    • 2022
  • The Emergency Diesel Generator (EDG) is a critical and essential part of the Nuclear Power Plant (NPP). Due to past catastrophic disasters, critical systems of NPP like EDG are designed to meet high dependability requirements. Therefore, we propose a framework for the dynamic reliability assessment using the Fault Tree and the Dynamic Bayesian Network. In this framework, the information of the component's failure probability is updated based on observed data. The framework is powerful to perform qualitative as well as quantitative analysis of the system. The validity of the framework is done by applying it on several NPP systems.

Internet Security Readiness: The Influence of Internet Usage Level and Awareness on Internet Security Readiness Capital, Skill, and Actual Uptake/Use of Infrastructure

  • Ryoo, Jung-Woo;Park, Eun-A
    • Journal of Computing Science and Engineering
    • /
    • v.5 no.1
    • /
    • pp.33-50
    • /
    • 2011
  • In this paper we applied our previously developed assessment framework to the data collected from an internet security readiness survey targeted at households. We used the assessment framework to compute an Internet Security Readiness index for each household, which was in turn derived from Internet Security Readiness capital, skill, and actual uptake/use of infrastructure indices. We then examined the relationships among overall Internet Security Readiness, and the capital, skill, and actual uptake/use of infrastructure related to Internet Security Readiness. In addition, we explored the influence of Internet usage level and experience on Internet Security Readiness.