• 제목/요약/키워드: Science and Technology Predictions

검색결과 335건 처리시간 0.021초

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • 제86권6호
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • 제15권7호
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

이산화탄소의 적외선 스펙트럼 예측을 위한 복사 데이터베이스 활용 (Application of Radiation Databases for the Prediction of CO2 Infrared Spectrum)

  • 남현재;권오준
    • 한국항공우주학회지
    • /
    • 제43권7호
    • /
    • pp.626-634
    • /
    • 2015
  • 본 연구에서는 이산화탄소의 적외선 스펙트럼을 예측하였다. 이를 위해 필요한 흡수계수는 line-by-line 기법을 적용해 계산하였으며 계산에 필요한 분광상수들은 복사 데이터베이스인 HITEMP2010과 CDSD-4000 데이터베이스를 활용하였다. 이산화탄소가 대표적으로 방출하는 2.7과 4.3, $15{\mu}m$ 밴드 영역에 대해 예측을 수행하였으며 타 연구자가 실험을 통해서 획득한 스펙트럼과 비교하여 결과를 검증하였다. 이산화탄소의 적외선 스펙트럼 예측 결과, 전반적으로 HITEMP2010 기반의 예측값과 CDSD-4000 기반의 예측값이 실험과 잘 일치하는 것을 확인하였으나 $4.3{\mu}m$ 밴드 영역에서는 CDSD-4000 기반의 예측값이 HITEMP2010 기반의 예측값보다 실험값과 더 잘 일치하는 것을 확인하였다.

가변 특성 임피던스 전송 선로를 이용한 가변 이중 대역 대역 통과 여파기 (A Tuable Dual-Band Bandpass Filter Design Using Variable Characteristic Transmission Lines)

  • ;정용채;임종식;김동수;김준철
    • 한국전자파학회논문지
    • /
    • 제22권9호
    • /
    • pp.852-857
    • /
    • 2011
  • 본 논문에서는 이중 대역 대역 통과 여파기 설계에 이용 가능한 가변 특성 임피던스 전송 선로의 응용을 제시하였다. 제안된 여파기는 고정된 첫 번째 통과 대역과 가변 가능한 두 번째 통과 대역을 갖는다. 스터브 부하공진기(Stub Loaded Resonator: SLR)는 직렬 공진기와 개방 단락 스터브로 구성되는데, 개방 단락 스터브를 결함 접지 구조(Defected Ground Structure: DGS) 전송 선로와 바랙터 다이오드로 구현함으로써 두 번째 통과 대역의 조정이 가능하다. 제안된 구조의 타당성을 보이기 위해 3개의 전송 영점을 갖는 2단 이중 대역 대역 통과 여파기를 설계하였고, 이론적인 예측값과 시뮬레이션 결과를 실험적으로 증명하였다.

인장하중을 받을 때 PZT 웨이퍼의 크립 거동: 실험과 모델링 (Creep Behavior of a PZT Wafer Under Tensile Stress: Experiments and Modeling)

  • 김상주;이창환
    • 대한기계학회논문집A
    • /
    • 제34권1호
    • /
    • pp.61-65
    • /
    • 2010
  • 두께방향으로 분극처리되어 있는 상업용 PZT 웨이퍼가 폐쇄회로와 개방회로의 두 가지 전기적 경계조건에서 길이 방향으로 일정한 크기의 인장하중을 받는다. 하중과정 동안 두께 방향으로의 전기밀도와 평면내 변형률의 시간에 따른 변화를 측정한다. 두 가지 전기적 경계조건에서의 서로 다른 거동 특성을 시편 내부에서 발생하는 전기장과 분극역전 현상으로 설명한다. 마지막으로 관측된 크립 거동을 예측하기 위한 정규분포 형식을 가지는 자유 에너지 함수를 도입하고 모델의 예측과 실험결과를 비교한다.

The Characteristics of Pulverized Coal Combustion in the Two Stage Cyclone Combustor

  • Joo, Nahm-Roh;Kim, Ho-Young;Chung, Jin-Taek;Park, Sang-Il
    • Journal of Mechanical Science and Technology
    • /
    • 제16권9호
    • /
    • pp.1112-1120
    • /
    • 2002
  • Numerical investigations on air staging and fuel staging were carried out with a newly designed coaxial cyclone combustor, which uses the method of two stage coal combustion composed of pre-combustor and main combustor. The pre-combustor with a high air/fuel ratio is designed to supply gas at high temperature to the main combustor. To avoid local high temperature region in this process, secondary air is injected in the downstream. Together with the burned gas supplied from the pre-combustor and the preheated air directly injected into main combustor, coals supplied through the main burner react rapidly at a low air/fuel ratio. Strong swirling motion of cyclone combustor keeps the wall temperature high, which makes slagging combustion possible. Alaska, US coal is used for calculations. Predictions were made for various coal flow rates in the main combustor for fuel staging and for the various flow rate of secondary air in the pre-combustor for air staging. In-scattering angles are also chosen as a variable to increase residence times of coal particles. Temperature fields and particle trajectories for various conditions are described. Predicted temperature variations at the wall of the combustor are compared with corresponding experimental data and show a similar trend. The in-scattering angle of 20° is recommended to increase the combustion efficiency in the main chamber.

A Numerical Study on the Spray-to-Spray Impingement System

  • Lee, Seong-Hyuk;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • 제16권2호
    • /
    • pp.235-245
    • /
    • 2002
  • The present article aims to perform numerical calculations for inter-spray impingement of two diesel sprays under a high injection pressure and to propose a new hybrid model for droplet collision on the basis of literature findings. The hybrid model is compared with the original O'Rourke's model, which has been widely used for spray calculations. The main difference between the hybrid model and the O'Rourke's model is mainly in determination of the collision threshold condition, in which the preferred directional effect of droplets and a critical collision radius are included. The Wave model involving the cavitation effect inside a nozzle is used for predictions of atomization processes. Numerical results are reported for different impingement angles of 60°and 90°in order to show the influence of the impinging angle on spray characteristics and also compared with experimental data. It is found that the hybrid model shows slightly better agreement with experimental data than the O'Rourke's model.

An Elastic-Plastic Stress Analysis in Silicon Carbide Fiber Reinforced Magnesium Metal Matrix Composite Beam Having Rectangular Cross Section Under Transverse Loading

  • Okumus, Fuat
    • Journal of Mechanical Science and Technology
    • /
    • 제18권2호
    • /
    • pp.221-229
    • /
    • 2004
  • In this work, an elastic-plastic stress analysis has been conducted for silicon carbide fiber reinforced magnesium metal matrix composite beam. The composite beam has a rectangular cross section. The beam is cantilevered and is loaded by a single force at its free end. In solution, the composite beam is assumed perfectly plastic to simplify the investigation. An analytical solution is presented for the elastic-plastic regions. In order to verify the analytic solution results were compared with the finite element method. An rectangular element with nine nodes has been choosen. Composite plate is meshed into 48 elements and 228 nodes with simply supported and in-plane loading condations. Predictions of the stress distributions of the beam using finite elements were overall in good agreement with analytic values. Stress distributions of the composite beam are calculated with respect to its fiber orientation. Orientation angles of the fiber are chosen as $0^{circ},\;30^{circ},\;45^{circ},\;60^{circ}\;and\;90^{circ}$. The plastic zone expands more at the upper side of the composite beam than at the lower side for $30^{circ},\;45^{circ}\;and\;60^{circ}$ orientation angles. Residual stress components of ${\sigma}_{x}\;and \;{\tau}_{xy}$ are also found in the section of the composite beam.

Structural analysis of high-rise reinforced concrete building structures during construction

  • Song, Xiaobin;Gu, Xianglin;Zhang, Weiping;Zhao, Tingshen;Jin, Xianyu
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.513-527
    • /
    • 2010
  • This paper presents a three-dimensional finite element method based structural analysis model for structural analysis of reinforced concrete high-rise buildings during construction. The model considered the time-dependency of the structural configuration and material properties as well as the effect of the construction rate and shoring stiffness. Uniaxial compression tests of young concrete within 28 days of age were conducted to establish the time-dependent compressive stress-strain relationship of concrete, which was then used as input parameters to the structural analysis model. In-situ tests of a RC high-rise building were conducted, the results of which were used for model verification. Good agreement between the test results and model predictions was achieved. At the end, a parametric study was conducted using the verified model. The results indicated that the floor position and construction rate had significant effect on the shore load, whereas the influence of the shore removal timing and shore stiffness have much smaller. It was also found that the floors are more prone to cracking during construction than is ultimate bending failure.

Computations of Droplet Impingement on Airfoils in Two-Phase Flow

  • Kim, Sang-Dug;Song, Dong-Joo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권12호
    • /
    • pp.2312-2320
    • /
    • 2005
  • The aerodynamic effects of leading-edge accretion can raise important safety concerns since the formulation of ice causes severe degradation in aerodynamic performance as compared with the clean airfoil. The objective of this study is to develop a numerical simulation strategy for predicting the particle trajectory around an MS-0317 airfoil in the test section of the NASA Glenn Icing Research Tunnel and to investigate the impingement characteristics of droplets on the airfoil surface. In particular, predictions of the mean velocity and turbulence diffusion using turbulent flow solver and Continuous Random Walk method were desired throughout this flow domain in order to investigate droplet dispersion. The collection efficiency distributions over the airfoil surface in simulations with different numbers of droplets, various integration time-steps and particle sizes were compared with experimental data. The large droplet impingement data indicated the trends in impingement characteristics with respect to particle size ; the maximum collection efficiency located at the upper surface near the leading edge, and the maximum value and total collection efficiency were increased as the particle size was increased. The extent of the area impinged on by particles also increased with the increment of the particle size, which is similar as compared with experimental data.