Browse > Article
http://dx.doi.org/10.3795/KSME-A.2010.34.1.61

Creep Behavior of a PZT Wafer Under Tensile Stress: Experiments and Modeling  

Kim, Sang-Joo (Department of Mechanical and Information Engineering, University of Seoul)
Lee, Chang-Hoan (Korea Institute of Science and Technology Information)
Publication Information
Transactions of the Korean Society of Mechanical Engineers A / v.34, no.1, 2010 , pp. 61-65 More about this Journal
Abstract
A commercially available soft PZT wafer that is poled in thickness direction is subjected to longitudinal tensile stress loading in both short and open-circuit conditions. Variations of electric displacement in thickness direction and in-plane strains are measured over time during the loading. Different material responses in the two electrical boundary conditions are explained by the effects of piezoelectrically produced internal electric field on linear material moduli and domain switching mechanisms. Finally, a free energy model of normal distribution is introduced to explain the observed creep behavior, and its predictions are compared with experimental observations.
Keywords
PZT Wafer; Tensile Load; Creep; Domain Switching; Normal Distribution; Constitutive Model;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Kamlah, M., Liskowsky, A. C., McMeeking, R. M. and Balke, H., 2005, “Finite Element Simulation of a Polycrystalline Ferroelectric Based on a Multidomain Single Crystal Switching Model”, Int. J. Solids Struct., Vol. 42, pp. 2949-2964   DOI   ScienceOn
2 Liu, Q. D. and Huber, J. E., 2006, “Creep in Ferroelectrics due to Unipolar Electrical Loadin,”J. Euro. Ceram. Soc., Vol. 26, pp. 2799-2806   DOI   ScienceOn
3 Kim, S. J. and Lee, C. H., 2009, ”Creep Behavior of a Poled PZT Wafer Under Longitudinal Tensile Stress and Through Thickness Electric Field,”Int. J. Solids Struct., Vol. 46, pp. 716-725   DOI   ScienceOn
4 Kim, S. J., 2009, “Predictions of Tensile Creep Behavior of a PZT Wafer by Normally Distributed Free Energy Model,” Mech. Mat. Vol. 41, pp. 1253-1263   DOI   ScienceOn
5 Kim S. J., 2007, “A Prediction of Rate-Dependent Behavior in Ferroelectric Polycrystals,” Mat. Sci. Eng. B., Vol. 141, pp. 34-42   DOI   ScienceOn
6 Smith R. C., Seelecke S. and Dapino M., 2006, “A Unified Framework for Modeling Hysteresis in Ferroic Materials,”J. Mech. Phys. Solids, Vol. 54, pp. 785-811   DOI   ScienceOn
7 Kim S. J. and Seelecke S., 2007,“A Rate-Dependent Three-Dimensional Free Energy Model for Ferroelectric Single Crystals,”Int. J. Solids Struct., Vol. 44, pp. 1196-1209   DOI   ScienceOn
8 Belov, A. Y. and Kreher, W. S., 2005,“Viscoplastic Behavior of Perovskite Type Ferroelectrics,”Mat. Sci. Eng. B, Vol. 118, pp. 7-11   DOI   ScienceOn
9 Srivastava N. and Weng G. J., 2006, “A Theory of Double Hysteresis for Ferroelectric Crystals,”J. Appl. Phys., Vol. 99, 054103   DOI   ScienceOn