• Title/Summary/Keyword: Science and Technology Predictions

Search Result 336, Processing Time 0.022 seconds

Model-based predictions for nuclear excitation functions of neutron-induced reactions on 64,66-68Zn targets

  • Yigit, M.;Kara, A.
    • Nuclear Engineering and Technology
    • /
    • v.49 no.5
    • /
    • pp.996-1005
    • /
    • 2017
  • In this paper, nuclear data for cross sections of the $^{64}Zn(n,2n)^{63}Zn$, $^{64}Zn(n,3n)^{62}Zn$, $^{64}Zn(n,p)^{64}Cu$, $^{66}Zn(n,2n)^{65}Zn$, $^{66}Zn(n,p)^{66}Cu$, $^{67}Zn(n,p)^{67}Cu$, $^{68}Zn(n,p)^{68}Cu$, and $^{68}Zn(n,{\alpha})^{65}Ni$ reactions were studied for neutron energies up to 40 MeV. In the nuclear model calculations, TALYS 1.6, ALICE/ASH, and EMPIRE 3.2 codes were used. Furthermore, the nuclear data for the (n,2n) and (n,p) reaction channels were also calculated using various cross-section systematics at energies around 14-15 MeV. The code calculations were analyzed and obtained using the different level densities in the exciton model and the geometry-dependent hybrid model. The results obtained from the excitation function calculations are discussed and compared with literature experimental data, ENDF/B-VII.1, and the TENDL-2015 evaluated data.

Nonlocal strain gradient theory for bending analysis of 2D functionally graded nanobeams

  • Aicha Bessaim;Mohammed Sid Ahmed Houari;Smain Bezzina;Ali Merdji;Ahmed Amine Daikh;Mohamed-Ouejdi Belarbi;Abdelouahed Tounsi
    • Structural Engineering and Mechanics
    • /
    • v.86 no.6
    • /
    • pp.731-738
    • /
    • 2023
  • This article presents an analytical approach to explore the bending behaviour of of two-dimensional (2D) functionally graded (FG) nanobeams based on a two-variable higher-order shear deformation theory and nonlocal strain gradient theory. The kinematic relations are proposed according to novel trigonometric functions. The material gradation and material properties are varied along the longitudinal and the transversal directions. The equilibrium equations are obtained by using the virtual work principle and solved by applying Navier's technique. A comparative evaluation of results against predictions from literature demonstrates the accuracy of the proposed analytical model. Moreover, a detailed parametric analysis checks for the sensitivity of the bending and stresses response of (2D) FG nanobeams to nonlocal length scale, strain gradient microstructure scale, material distribution and geometry.

Two-Phase Flow Regimes for Counter-Current Air-Water Flows in Narrow Rectangular Channels

  • Kim, Byong-Joo;Sohn, Byung-Hu;Siyoung Jeong
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.7
    • /
    • pp.941-950
    • /
    • 2001
  • A study of counter-current two-phase flow in narrow rectangular channels has been performed. Two-phase flow regimes were experimentally investigated in a 760mm long and 100mm wide test section with 2.0 and 5.0mm gap widths. The resulting flow regime maps were compared with the existing transition criteria. The experimental data and the transition criteria of the models showed relatively good agreement. However, the discrepancies between the experimental data and the model predictions of the flow regime transition become pronounced as the gap width increased. As the gap width increased the transition gas superficial velocities increased. The critical void fraction for the bubbly-to-slug transition was observed to be about 0.25. The two-phase distribution parameter for the slug flow was larger for the narrower channel. The uncertainties in the distribution parameter could lead to a disagreement in slug-to-churn transition between the experimental findings and the transition criteria. For the transition from churn to annular flow the effect of liquid superficial velocity was found to be insignificant.

  • PDF

Application of Radiation Databases for the Prediction of CO2 Infrared Spectrum (이산화탄소의 적외선 스펙트럼 예측을 위한 복사 데이터베이스 활용)

  • Nam, Hyun Jae;Kwon, Oh Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.7
    • /
    • pp.626-634
    • /
    • 2015
  • In the present study, numerical predictions of infrared spectra for $CO_2$ molecule were conducted. Absorption coefficients of $CO_2$ which are required for simulating the spectra, were calculated by using a line-by-line method and by adopting spectroscopic parameters from the radiation databases, HITEMP2010 and CDSD-4000. Simulations were made in the 2.7, 4.3, and $15{\mu}m$ band regions, and the results were compared with the measurements of other researchers. It was found that the calculated results are well matched with the various measurements. However, in the $4.3{\mu}m$ band region, the CDSD-4000 based calculation yields a better fit to the measurement than the HITEMP2010 based calculation does.

A Tuable Dual-Band Bandpass Filter Design Using Variable Characteristic Transmission Lines (가변 특성 임피던스 전송 선로를 이용한 가변 이중 대역 대역 통과 여파기)

  • Chaudhary, Girdhari;Jeong, Yong-Chae;Lim, Jong-Sik;Kim, Dong-Su;Kim, Jun-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.9
    • /
    • pp.852-857
    • /
    • 2011
  • In this paper, the application of a variable characteristic impedance transmission line that can be used to design a dual-band bandpass filter(BPF) is presented. The proposed filter offers a fixed first frequency passband and a controllable second passband. The tuning of the second passband is achieved by varying the characteristic impedance of and open shunt stub line in a stub loaded resonator(SLR) with the help of a defected ground structure(DGS) transmission line and varactor diodes. In order to validate the proposed structure, a two stage dual-band BPF with three transmission zeros was implemeted and experimentally verified based on its theoretical predictions and simulations.

Creep Behavior of a PZT Wafer Under Tensile Stress: Experiments and Modeling (인장하중을 받을 때 PZT 웨이퍼의 크립 거동: 실험과 모델링)

  • Kim, Sang-Joo;Lee, Chang-Hoan
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.1
    • /
    • pp.61-65
    • /
    • 2010
  • A commercially available soft PZT wafer that is poled in thickness direction is subjected to longitudinal tensile stress loading in both short and open-circuit conditions. Variations of electric displacement in thickness direction and in-plane strains are measured over time during the loading. Different material responses in the two electrical boundary conditions are explained by the effects of piezoelectrically produced internal electric field on linear material moduli and domain switching mechanisms. Finally, a free energy model of normal distribution is introduced to explain the observed creep behavior, and its predictions are compared with experimental observations.

The Characteristics of Pulverized Coal Combustion in the Two Stage Cyclone Combustor

  • Joo, Nahm-Roh;Kim, Ho-Young;Chung, Jin-Taek;Park, Sang-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.9
    • /
    • pp.1112-1120
    • /
    • 2002
  • Numerical investigations on air staging and fuel staging were carried out with a newly designed coaxial cyclone combustor, which uses the method of two stage coal combustion composed of pre-combustor and main combustor. The pre-combustor with a high air/fuel ratio is designed to supply gas at high temperature to the main combustor. To avoid local high temperature region in this process, secondary air is injected in the downstream. Together with the burned gas supplied from the pre-combustor and the preheated air directly injected into main combustor, coals supplied through the main burner react rapidly at a low air/fuel ratio. Strong swirling motion of cyclone combustor keeps the wall temperature high, which makes slagging combustion possible. Alaska, US coal is used for calculations. Predictions were made for various coal flow rates in the main combustor for fuel staging and for the various flow rate of secondary air in the pre-combustor for air staging. In-scattering angles are also chosen as a variable to increase residence times of coal particles. Temperature fields and particle trajectories for various conditions are described. Predicted temperature variations at the wall of the combustor are compared with corresponding experimental data and show a similar trend. The in-scattering angle of 20° is recommended to increase the combustion efficiency in the main chamber.

A Numerical Study on the Spray-to-Spray Impingement System

  • Lee, Seong-Hyuk;Ko, Gwon-Hyun;Ryou, Hong-Sun
    • Journal of Mechanical Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.235-245
    • /
    • 2002
  • The present article aims to perform numerical calculations for inter-spray impingement of two diesel sprays under a high injection pressure and to propose a new hybrid model for droplet collision on the basis of literature findings. The hybrid model is compared with the original O'Rourke's model, which has been widely used for spray calculations. The main difference between the hybrid model and the O'Rourke's model is mainly in determination of the collision threshold condition, in which the preferred directional effect of droplets and a critical collision radius are included. The Wave model involving the cavitation effect inside a nozzle is used for predictions of atomization processes. Numerical results are reported for different impingement angles of 60°and 90°in order to show the influence of the impinging angle on spray characteristics and also compared with experimental data. It is found that the hybrid model shows slightly better agreement with experimental data than the O'Rourke's model.

An Elastic-Plastic Stress Analysis in Silicon Carbide Fiber Reinforced Magnesium Metal Matrix Composite Beam Having Rectangular Cross Section Under Transverse Loading

  • Okumus, Fuat
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.221-229
    • /
    • 2004
  • In this work, an elastic-plastic stress analysis has been conducted for silicon carbide fiber reinforced magnesium metal matrix composite beam. The composite beam has a rectangular cross section. The beam is cantilevered and is loaded by a single force at its free end. In solution, the composite beam is assumed perfectly plastic to simplify the investigation. An analytical solution is presented for the elastic-plastic regions. In order to verify the analytic solution results were compared with the finite element method. An rectangular element with nine nodes has been choosen. Composite plate is meshed into 48 elements and 228 nodes with simply supported and in-plane loading condations. Predictions of the stress distributions of the beam using finite elements were overall in good agreement with analytic values. Stress distributions of the composite beam are calculated with respect to its fiber orientation. Orientation angles of the fiber are chosen as $0^{circ},\;30^{circ},\;45^{circ},\;60^{circ}\;and\;90^{circ}$. The plastic zone expands more at the upper side of the composite beam than at the lower side for $30^{circ},\;45^{circ}\;and\;60^{circ}$ orientation angles. Residual stress components of ${\sigma}_{x}\;and \;{\tau}_{xy}$ are also found in the section of the composite beam.

Structural analysis of high-rise reinforced concrete building structures during construction

  • Song, Xiaobin;Gu, Xianglin;Zhang, Weiping;Zhao, Tingshen;Jin, Xianyu
    • Structural Engineering and Mechanics
    • /
    • v.36 no.4
    • /
    • pp.513-527
    • /
    • 2010
  • This paper presents a three-dimensional finite element method based structural analysis model for structural analysis of reinforced concrete high-rise buildings during construction. The model considered the time-dependency of the structural configuration and material properties as well as the effect of the construction rate and shoring stiffness. Uniaxial compression tests of young concrete within 28 days of age were conducted to establish the time-dependent compressive stress-strain relationship of concrete, which was then used as input parameters to the structural analysis model. In-situ tests of a RC high-rise building were conducted, the results of which were used for model verification. Good agreement between the test results and model predictions was achieved. At the end, a parametric study was conducted using the verified model. The results indicated that the floor position and construction rate had significant effect on the shore load, whereas the influence of the shore removal timing and shore stiffness have much smaller. It was also found that the floors are more prone to cracking during construction than is ultimate bending failure.