• 제목/요약/키워드: Science Cloud

검색결과 1,607건 처리시간 0.03초

Dynamic Task Scheduling Via Policy Iteration Scheduling Approach for Cloud Computing

  • Hu, Bin;Xie, Ning;Zhao, Tingting;Zhang, Xiaotong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권3호
    • /
    • pp.1265-1278
    • /
    • 2017
  • Dynamic task scheduling is one of the most popular research topics in the cloud computing field. The cloud scheduler dynamically provides VM resources to variable cloud tasks with different scheduling strategies in cloud computing. In this study, we utilized a valid model to describe the dynamic changes of both computing facilities (such as hardware updating) and request task queuing. We built a novel approach called Policy Iteration Scheduling (PIS) to globally optimize the independent task scheduling scheme and minimize the total execution time of priority tasks. We performed experiments with randomly generated cloud task sets and varied the performance of VM resources using Poisson distributions. The results show that PIS outperforms other popular schedulers in a typical cloud computing environment.

An Overview of Data Security Algorithms in Cloud Computing

  • D. I. George Amalarethinam;S. Edel Josephine Rajakumari
    • International Journal of Computer Science & Network Security
    • /
    • 제23권5호
    • /
    • pp.65-72
    • /
    • 2023
  • Cloud Computing is one of the current research areas in computer science. Recently, Cloud is the buzz word used everywhere in IT industries; It introduced the notion of 'pay as you use' and revolutionized developments in IT. The rapid growth of modernized cloud computing leads to 24×7 accessing of e-resources from anywhere at any time. It offers storage as a service where users' data can be stored on a cloud which is managed by a third party who is called Cloud Service Provider (CSP). Since users' data are managed by a third party, it must be encrypted ensuring confidentiality and privacy of the data. There are different types of cryptographic algorithms used for cloud security; in this article, the algorithms and their security measures are discussed.

Intelligent Resource Management Schemes for Systems, Services, and Applications of Cloud Computing Based on Artificial Intelligence

  • Lim, JongBeom;Lee, DaeWon;Chung, Kwang-Sik;Yu, HeonChang
    • Journal of Information Processing Systems
    • /
    • 제15권5호
    • /
    • pp.1192-1200
    • /
    • 2019
  • Recently, artificial intelligence techniques have been widely used in the computer science field, such as the Internet of Things, big data, cloud computing, and mobile computing. In particular, resource management is of utmost importance for maintaining the quality of services, service-level agreements, and the availability of the system. In this paper, we review and analyze various ways to meet the requirements of cloud resource management based on artificial intelligence. We divide cloud resource management techniques based on artificial intelligence into three categories: fog computing systems, edge-cloud systems, and intelligent cloud computing systems. The aim of the paper is to propose an intelligent resource management scheme that manages mobile resources by monitoring devices' statuses and predicting their future stability based on one of the artificial intelligence techniques. We explore how our proposed resource management scheme can be extended to various cloud-based systems.

Observational Evidence of Giant Cloud Condensation Nucleus Effects on the Precipitation Sensitivity in Marine Stratocumulus Clouds

  • Jung, Eunsil
    • 한국지구과학회지
    • /
    • 제43권4호
    • /
    • pp.498-510
    • /
    • 2022
  • Cloud-aerosol interactions are one of the paramount but least understood forcing factors in climate systems. Generally, an increase in the concentration of aerosols increases the concentration of cloud droplet numbers, implying that clouds tend to persist for longer than usual, suppressing precipitation in the warm boundary layer. The cloud lifetime effect has been the center of discussion in the scientific community, partly because of the lack of cloud life cycle observations and partly because of cloud problems. In this study, the precipitation susceptibility (So) matrix was employed to estimate the aerosols' effect on precipitation, while the non-aerosol effect is minimized. The So was calculated for the typical coupled, well-mixed maritime stratocumulus decks and giant cloud condensation nucleus (GCCN) seeded clouds. The GCCN-artificially introduced to the marine stratocumulus cloud decks-is shown to initiate precipitation and reduces So to approximately zero, demonstrating the cloud lifetime hypothesis. The results suggest that the response of precipitation to changes in GCCN must be considered for accurate prediction of aerosol-cloud-precipitation interaction by model studies

Privacy-assured Boolean Adjacent Vertex Search over Encrypted Graph Data in Cloud Computing

  • Zhu, Hong;Wu, Bin;Xie, Meiyi;Cui, Zongmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제10권10호
    • /
    • pp.5171-5189
    • /
    • 2016
  • With the popularity of cloud computing, many data owners outsource their graph data to the cloud for cost savings. The cloud server is not fully trusted and always wants to learn the owners' contents. To protect the information hiding, the graph data have to be encrypted before outsourcing to the cloud. The adjacent vertex search is a very common operation, many other operations can be built based on the adjacent vertex search. A boolean adjacent vertex search is an important basic operation, a query user can get the boolean search results. Due to the graph data being encrypted on the cloud server, a boolean adjacent vertex search is a quite difficult task. In this paper, we propose a solution to perform the boolean adjacent vertex search over encrypted graph data in cloud computing (BASG), which maintains the query tokens and search results privacy. We use the Gram-Schmidt algorithm and achieve the boolean expression search in our paper. We formally analyze the security of our scheme, and the query user can handily get the boolean search results by this scheme. The experiment results with a real graph data set demonstrate the efficiency of our scheme.

INVESTIGATION OF CLOUD COVERAGE OVER ASIA WITH NOAA AVHRR TIME SERIES

  • Takeuchit Wataru;Yasuokat Yoshifumi
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.26-29
    • /
    • 2005
  • In order to compute cloud coverage statistics over Asian region, an operational scheme for masking cloud-contaminated pixels in Advanced Very High Resolution Radiometer (AVHRR) daytime data was developed, evaluated and presented. Dynamic thresholding was used with channell, 2 and 3 to automatically create a cloud mask for a single image. Then the IO-day cloud coverage imagery was generated over the whole Asian region along with cloud-free composite imagery. Finally the monthly based statistics were computed based on the derived cloud coverage imagery in terms of land cover and country. As a result, it was found that 20-day is required to acquire the cloud free data over the whole Asia using NOAA AVHRR. The to-day cloud coverage and cloud-free composite imagery derived in this research is available via the web-site http://webpanda.iis.u-tokyo.ac.jp/CloudCover/.

  • PDF

항공기를 이용한 인공증우(설) 기술과 결과분석 (Analysis of Results and Techniques about Precipitation Enhancement by Aircraft Seeding in Korea)

  • 차주완;정운선;채상희;고아름;노용훈;장기호;서성규;하종철;박동오;황현준;김민후;김경익;구정모
    • 대기
    • /
    • 제29권4호
    • /
    • pp.481-499
    • /
    • 2019
  • National Institute of Meteorological Sciences has conducted a total 54 cloud seeding experiments with a silver iodide and calcium chloride using aircrafts from 2008 to 2018. The goal of the experiments is to improve the techniques of precipitation enhancement in Korea. The cloud seeding experiments using the silver iodide and calcium chloride were 36 and 18 times, respectively. During the cloud seeding experiments of the silver iodide and calcium chloride, the average values of total cloud amount for two kinds of seeding materials were 9.6 for and 8.1, respectively. The cloud type with the highest occurrence was Nimbostratus (Ns)-Stratus (St) (58%) in the silver iodide cloud seeding experiment. It was Altostratus (As)-Stratocumulus (Sc) (44%) in the calcium chloride cloud seeding experiment. Compared to probability of obtaining cloud seeding effect of the experiments using a leased aircraft, the probability using an atmospheric research aircraft increased from 43% to 63% in the silver iodide cloud seeding experiment and from 29% to 75% in the calcium chloride cloud seeding experiment. However, the increasing tendency was only shown during the one year experiment (2018). To get the meaningful statistical tendency of the cloud seeding effects, it is needed to implement many experiments in several years. Further we have to more clearly understand the characteristics of clouds developing in Korea and implement the cloud seeding experiments under a variety of weather conditions in order to develop the optimized precipitation enhancement technology in Korea.

Isolation Schemes of Virtual Network Platform for Cloud Computing

  • Ahn, SungWon;Lee, ShinHyoung;Yoo, SeeHwan;Park, DaeYoung;Kim, Dojung;Yoo, Chuck
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제6권11호
    • /
    • pp.2764-2783
    • /
    • 2012
  • Network virtualization supports future Internet environments and cloud computing. Virtualization can mitigate many hardware restrictions and provide variable network topologies to support variable cloud services. Owing to several advantages such as low cost, high flexibility, and better manageability, virtualization has been widely adopted for use in network virtualization platforms. Among the many issues related to cloud computing, to achieve a suitable cloud service quality we specifically focus on network and performance isolation schemes, which ensure the integrity and QoS of each virtual cloud network. In this study, we suggest a virtual network platform that uses Xen-based virtualization, and implement multiple virtualized networks to provide variable cloud services on a physical network. In addition, we describe the isolation of virtual networks by assigning a different virtualized network ID (VLAN ID) to each network to ensure the integrity of the service contents. We also provide a method for efficiently isolating the performance of each virtual network in terms of network bandwidth. Our performance isolation method supports multiple virtual networks with different levels of service quality.

Combined Microwave Radiometer and Micro Rain Radar for Analysis of Cloud Liquid Water

  • Yang, Ha-Young;Chang, Ki-Ho;Kang, Seong-Tae
    • 통합자연과학논문집
    • /
    • 제6권1호
    • /
    • pp.12-15
    • /
    • 2013
  • To combine the micro rain radar and microwave radiometer cloud liquid water, we estimate the cloud physical thickness from the difference between the MTSAT-1R cloud top height and cloud base height of visual observation of Daegwallyeong weather station, and the cloud liquid water path of micro rain radar is obtained by multiplying the liquid water content of micro rain radar and the estimated cloud physical thickness. The trend of microwave radiometer liquid water path agrees with that of the micro rain radar during small precipitation. We study these characteristics of micro rain radar and microwave radiometer for small precipitation to obtain the combined cloud water content of micro rain radar and microwave radiometer, constantly operated regardless to the rainfall.

Effective Task Scheduling and Dynamic Resource Optimization based on Heuristic Algorithms in Cloud Computing Environment

  • NZanywayingoma, Frederic;Yang, Yang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권12호
    • /
    • pp.5780-5802
    • /
    • 2017
  • Cloud computing system consists of distributed resources in a dynamic and decentralized environment. Therefore, using cloud computing resources efficiently and getting the maximum profits are still challenging problems to the cloud service providers and cloud service users. It is important to provide the efficient scheduling. To schedule cloud resources, numerous heuristic algorithms such as Particle Swarm Optimization (PSO), Genetic Algorithm (GA), Ant Colony Optimization (ACO), Cuckoo Search (CS) algorithms have been adopted. The paper proposes a Modified Particle Swarm Optimization (MPSO) algorithm to solve the above mentioned issues. We first formulate an optimization problem and propose a Modified PSO optimization technique. The performance of MPSO was evaluated against PSO, and GA. Our experimental results show that the proposed MPSO minimizes the task execution time, and maximizes the resource utilization rate.