
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                      2764 

Copyright © 2012 KSII 

 

A preliminary version of this paper appeared in ICONI 2011, December 15-19, Sepang, Malaysia. This version 

includes a concrete analysis and supporting implementation results on the performance isolation scheme of 

virtualized network. This study was supported by the National Research Foundation of Korea (NRF) grant funded 

by the Korea government (MEST) (No. 2011-0029848). 

http://dx.doi.org/10.3837/tiis.2012.10.001 

Isolation Schemes of Virtual Network 
Platform for Cloud Computing 

 
SungWon Ahn, ShinHyoung Lee, SeeHwan Yoo, DaeYoung Park, Dojung Kim and Chuck Yoo 

Dept. of Computer Science and Engineering, Korea University, 

Anam-dong, Seongbuk-gu Seoul 136-713, South Korea  

[e-mail: {swahn, shlee, shyoo, dypark, djkim, chuckyoo}@os.korea.ac.kr] 

 *Corresponding author: Chuck Yoo 

 

Received April 9, 2012; revised July 7, 2012; revised September 6, 2012; accepted October 8, 2012; 

published November 30, 2012 

 

 

Abstract 
 

Network virtualization supports future Internet environments and cloud computing. 

Virtualization can mitigate many hardware restrictions and provide variable network 

topologies to support variable cloud services. Owing to several advantages such as low cost, 

high flexibility, and better manageability, virtualization has been widely adopted for use in 

network virtualization platforms. Among the many issues related to cloud computing, to 

achieve a suitable cloud service quality we specifically focus on network and performance 

isolation schemes, which ensure the integrity and QoS of each virtual cloud network. In this 

study, we suggest a virtual network platform that uses Xen-based virtualization, and 

implement multiple virtualized networks to provide variable cloud services on a physical 

network. In addition, we describe the isolation of virtual networks by assigning a different 

virtualized network ID (VLAN ID) to each network to ensure the integrity of the service 

contents. We also provide a method for efficiently isolating the performance of each virtual 

network in terms of network bandwidth. Our performance isolation method supports multiple 

virtual networks with different levels of service quality.  
 

 

Keywords: Network virtualization, Performance isolation, Cloud computing, Xen 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2765 

 

1. Introduction 

The importance of cloud computing is increasing with the rising popularity of cloud services. 

To create a cloud computing service, virtual servers, virtual storage, and virtual networks are 

required [1]. Therefore, virtualization is the core technology used for cloud computing and has 

been studied in many fields. Virtualization can ensure diversity, which is a major advantage 

for virtualization of cloud computing, and allows various types of cloud services to coexist on 

a physical network. To make such advantages possible, among the different types of 

virtualization technologies available, network virtualization used for creating a virtual 

network is a particularly important technology for supporting cloud computing in future 

Internet environments. The design of a virtual network for cloud computing requires the 

consideration of many criteria, such as scalability, availability, reliability, flexibility, and 

utilization. In terms of diversity, network virtualization can help ensure that these criteria are 

selected suitably for cloud computing by supporting variable network topologies that facilitate 

various cloud services [2]. 

Network virtualization technology is used to create a virtualized network through both 

router and link virtualization. Router virtualization provides multiple independent logical 

routers on one physical router, whereas link virtualization provides multiple virtual links on 

one physical link. To create a virtualized network, virtualized routers are required, and the use 

of a software router has been suggested as one possible option. Recently proposed software 

routers that can overcome existing hardware limitations can also support many services such 

as content-centric network (CCN) [3] and content delivery network (CDN) [4]. However, the 

low performance of these routers remains an arguable problem. On the other hand, many 

studies on network virtualization have focused on large servers and storage systems [5]. There 

have also been a few analyses on network variety. However, there has been insufficient 

research on the coexistence of various virtualized networks for various cloud services with 

relatively low cost.  

For the coexistence of various virtual networks to ensure the diversity of various cloud 

service types, two issues must be considered. The first issue is the isolation between 

virtualized networks. The second issue is a flexible performance guarantee. Isolation is 

required because the characteristics of each virtual network differ for different cloud services. 

Virtualized networks share physical resources. Thus, if each cloud service uses a different 

protocol, then isolation is required to ensure the integrity of each cloud service. Moreover, an 

adaptive bandwidth allocation scheme is also necessary to ensure a proper quality of service 

(QoS) for different content in a cloud-computing environment because each cloud service 

requires a different bandwidth.  

In this paper, we suggest a virtual network platform for cloud computing and its schemes to 

support various cloud services independently on a physical network. We also suggest 

communication methods with effective bandwidth management to ensure better quality for 

each cloud service, and two isolation schemes for a virtualized network in a cloud 

environment: network isolation and performance isolation. Network isolation ensures the 

integrity of each virtual network isolated from other networks using a virtual LAN (VLAN) ID. 

The performance isolation scheme applied to an isolated virtual network then ensures the use 

of effective bandwidth resource management such as dynamic bandwidth allocation, 

weight-based bandwidth allocation, and channel bonding. We implemented these techniques 

for a Xen [6][7] environment, which provides flexible virtualization, and used an Intel 82599 



2766                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

10 G Ethernet card [8], which supports SR-IOV [9] as a hardware platform. We used SR-IOV 

to improve the throughput performance of the virtual router. 

The rest of this paper is organized as follows. Section 2 reviews the background research 

conducted on this topic, such as the virtualization concept, testbeds with network 

virtualization, software routers, and performance-improving virtualization technology. Next, 

in Section 3, we describe the isolation concept for a virtualized cloud network used in our 

system, and Section 4 illustrates the isolation performance of this virtualized cloud network. In 

Section 5, we describe the evaluation results of our suggested schemes. Finally, we offer some 

concluding remarks and future directions for this research in Section 6. 

2. Background Research 

2.1 Virtualization 

Virtualization is a technique used for efficiently controlling the interactions between users, 

applications, systems, and computing resources with an abstract physical specification. 

Virtualization can be applied to almost all items related to computers such as the CPU, 

memory, I/O devices, other hardware resources, and computer applications. Taking advantage 

of virtualization technology, the utilization of available resources can be maximized. For 

instance, a single piece of hardware or equipment can be used for several tasks. On the other 

hand, several pieces of hardware or equipment can perform a single task together. As a result, 

virtualization can guarantee a reduction of administrative costs. Such properties increase the 

flexibility and availability of the system. System virtualization can be divided into two parts: 

full-virtualization (hardware virtual machine (HVM)) and para-virtualization (PV). VM-ware 

[10] is an example of full-virtualization, and it does not require a modification of the guest OS. 

In addition, most works operate as software. However, full-virtualization has a low 

performance. Para-virtualization, on the other hand, overcomes the disadvantages of 

full-virtualization. A typical example of para-virtualization is Xen [6][7], which improves the 

performance of virtualization by modifying the guest OS code. Xen manages instructions 

using a hyper-call, which is similar to a system call. Therefore, there are no additional 

conversing operations during a guest OS operation. In this study, we use Xen for a 

virtualization environment to support greater flexibility and ensure a suitable performance. 

2.2 Network Virtualization 

Network virtualization allows the coexistence of multiple virtual networks on one physical 

network. Network virtualization can divide the practicalities of Internet service providers 

(ISPs) into infrastructure providers (InPs) and service providers (SPs). An InP manages the 

physical infrastructure, whereas an SP creates the virtual networks. Therefore, network 

virtualization also allows the coexistence of multiple cloud service providers on several 

heterogeneous virtual networks with isolation capability. Thus, these service providers can 

serve and manage customized cloud services for end users on virtual networks with an 

effective sharing and utilization of network resources leased from several infrastructure 

providers [2]. 

Current virtualization technologies for network use can be broadly divided into two 

categories: router virtualization and link virtualization [11][12]. The router virtualization 

technique provides multiple independent logical routers on a physical router platform using 

system virtualization. It creates multiple virtual routers from one physical router through a 

separation of resources. Link virtualization provides multiple virtual links on a physical link, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2767 

 

or integrated virtual links on multiple physical links. It provides a virtual network interface 

card (VNIC), which has several virtualized network interfaces in one physical network device. 

We implemented both types of virtualizations in our system.  

2.3 Testbeds 

Typical testbed studies include PlanetLab [13], NetServ [14], and GENI [15]. PlanetLab was 

developed to deploy geographically distributed network services with support for researchers 

and users. Its goal is to create a service-oriented network architecture that combines both a 

distributed system community and a network community. However, it does not support 

wireless or non-IP environments. In addition, it is difficult to change the network environment 

owing to the use of the virtualization of layer 3, which is the network layer. NetServ can be 

divided into two parts: a click module router and an OSGi framework. This architecture has 

the advantage of providing independent services and flexible changes in policy. However, a 

low performance is a specific problem inherent in this system. Finally, GENI is a project of the 

US NSF, the major goal of which is to build an open, large-scale, realistic experimental facility 

for evaluating new network architectures. It uses a programmable module block to implement 

the functions required for the virtualization of physical network resources. Testbeds are used 

to build a flexible virtual network environment, the foundation of which is network 

virtualization. 

2.4 Software Routers 

The benefit of virtualization is the elimination of hardware dependency through devices such 

as a software router. Software routers have been studied as a cost-saving solution, and can be 

applied to various platforms as an alternative to a hardware router. They have many 

advantages such as flexibility, manageability, and scalability. The software router architecture 

is configured using a software routing application on a hardware operating system. There have 

been several studies conducted on software routers. For instance, Click [16] ensures a freely 

configurable routing scheme by making it possible to change modules dynamically. 

OpenFlow [17] ensures the management of a dynamic routing flow table by separating the 

data and routing control. Moreover, XORP [18] can support various routing protocols such as 

unicast and multicast.  

However, the long-standing problem of low-performance problem of software routers 

remains unresolved. Therefore, performance enhancement studies have helped in the 

development of devices such as PacketShader [19], which use a graphics processing unit 

(GPU) with hundreds of multi-cores. However, software routers do not ensure the complete 

isolation of virtualized networks in a shared resource environment where various protocols 

coexist. As a result, studies on isolation are necessary to support multiple isolated virtual 

networks for future Internet schemes. Such studies are also required to overcome the 

limitations of software routers. In this paper, we describe the importance of isolation and its 

implementation. Additionally, we suggest a method that can ensure the isolation of a network 

and stably manage various virtualized networks. 

2.5 Network Isolation Methods 

Isolation between coexisting virtual networks is essential for ensuring the integrity of each 

network. Several network isolation methods have been utilized in different projects. Among 

many isolation schemes, we focused on isolation schemes of link virtualization which is 

focused in this paper. Typical examples of encapsulation protocols include Ethernet frames to 



2768                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

IP packets (EtherIP) [20] and generic routing encapsulation (GRE) [21]. These protocols allow 

the use of a virtual private network with network isolation. However, they do not ensure 

performance isolation with adaptive bandwidth allocation.  

Another method considered is multiprotocol label switching (MPLS) [22], which involves 

assigning a short fixed-length label to packets joining an MPLS cloud. Such a label is used to 

generate forwarding decisions. MPLS allows multiple networks to be separated quickly and 

effectively. Moreover, it provides various levels of QoS based on the class-of-service label. 

However, it has a restriction in that all network routers and switches must support MPLS. 

Although MPLS has several advantages as a candidate Internet backbone network, it also has 

certain disadvantages. The label distribution protocol (LDP) of MPLS, which is a core 

technique, is very complex and incomplete. This complex protocol can easily suffer from a 

lack of interoperability. In addition, as an incomplete protocol lacking explicit routing support, 

it requires additional protocol extensions. 

In this paper, we used the IEEE 802.1Q standard [23] based on its suitability to the 

virtualization concept of our project. This mechanism uses a VLAN tag for dividing a virtual 

network. Ensuring isolation through a layer 3 routing protocol in multiple virtual network 

environments with adaptive bandwidth allocation is one of the differences with previous 

studies, as mentioned earlier. 

2.6 SR-IOV 

Single-root I/O virtualization (SR-IOV) is a new I/O virtualization technique using an 

Intel-VT [24]. This type of method utilizes an HVM, which solves the performance 

degradation problem through virtualization. SR-IOV is also supported by Xen. It uses an I/O 

memory management unit (I/O MMU) for an address-translation service. As background, 

SR-IOV assumes a driver domain that runs the device drivers, and a guest domain that runs the 

applications. Using SR-IOV, any guest domain can issue an I/O without additional 

performance overhead. SR-IOV allows guest domains to access and use a single physical PCIe 

I/O resource directly. To make this possible, SR-IOV supports both a virtual function (VF) and 

a physical function (PF). A VF has basic PCIe features and can serve PCIe data 

communication. A PF has full PCIe features and can control all of the PCIe I/O device 

functions. A guest domain can access I/O devices and receive data through a VF to minimize 

the virtualization overhead. A PF is generally used in the driver domain for device 

initialization, configuration, and control. 

3. Virtual Network Platform for Cloud Services 

3.1 Virtualized Networks 

To provide diversity and coexistence to a cloud service on a single physical network, a 

virtualization technology is required, as mentioned previously. In addition, an isolated 

communication environment for each virtual cloud network is needed to ensure the QoS of 

each different cloud service. In this section, we suggest an isolated virtual cloud network using 

a Xen-based virtual router. The configuration of a virtual network for supporting various 

protocols is shown in Fig. 1. Each virtualized router of a virtual network platform can connect 

with another virtual network based on the required service, and can create multiple virtual 

networks on a single physical network. In Fig. 1, virtual cloud networks 1 and 2 share one 

physical network. In other words, it is possible to configure virtual cloud networks that support 

different protocols such as IPv4, IPv6, and CCN. These protocols coexist on a single router. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2769 

 

For example, virtual cloud network 1 provides a video streaming service using the CCN 

protocol, and a user terminal that wants to receive a video service can connect with this 

network. At the same time, another service using the IPv4 or IPV6 protocol can be provided to 

the user terminals through virtual cloud network 2 on the same physical network. 
 

 

Fig. 1. Virtualized cloud networks 

3.2 Virtual Network Platform 

Fig. 2 shows the system configuration of a virtual network platform. We implement our 

system using Xen as a hypervisor. The flexible software router in Fig. 2 is a virtual router. 

Each virtual router has a control plane and operates as a router with a specific routing protocol 

such as RIP or OSPF. These routers have an independent routing table and coexist on a 

physical router. Each virtual router (the flexible software router shown in Fig. 2) has its own 

virtualized network interface. The virtual network management module in the Xen hypervisor 

manages these virtual routers. It creates a new virtual router on demand and assigns the 

required bandwidth. In addition, it controls whether a received packet is sent, and if so, which 

virtual router it should be sent to. As shown in Fig. 2, the data flow of each virtual cloud 

network is controlled through a different VNIC within the system. 



2770                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

 

Fig. 2. System configuration of a virtual network platform 

3.3 Network Isolation using VLAN ID 

As we mentioned in Figs. 1 and 2, each virtual network shares one physical network. Although 

they use the same physical hardware, they must be operated independently. Fig. 3 shows the 

isolation of various virtual cloud networks, which is called network isolation. Network 

isolation indicates a perfectly isolated network that does not affect other networks. For 

instance, network isolation does not allow the inflow of a secure packet of VLAN 1, or the 

inflow of a worm virus packet of VLAN 2, to arrive at other virtual networks. In addition, each 

network should avoid infections, such as from a distributed denial of service (DDOS) attack. 

Each cloud service can be ensured a level of integrity and service quality through network 

isolation. 

 

 

Fig. 3. Isolation of virtual networks  



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2771 

 

To secure the isolation of virtual networks, we gave a VLAN ID to each packet of each virtual 

network according to the service or protocol. Each virtual network has an inherent VLAN ID 

used to construct the network. Only virtual networks that have the same VLAN ID can 

communicate with each other. Therefore, if the VLAN ID of a virtual network differs from the 

common ID, the network cannot connect to the infrastructure of another virtual network. 

In Fig. 3, each machine creates various virtual networks using the VMs in each machine 

connected to other VMs that have the same VLAN ID. VM0 in machine 1 has a VLAN 1 ID 

and connects to VM0 in machine 2 and VM0 in machine 3, which also have a VLAN 1 ID. In 

this same way, VLAN 2 is constructed along with VM1 in machine 1, VM1 in machine 3, and 

VM0 in machine 4. Each virtualized router receives several different VLAN IDs depending on 

each service and protocol. Virtualized router machine 1 shown in Fig. 3 has two different 

VLAN IDs depending on two cloud services. It belongs to two different topologies at the same 

time. It also has two different routing tables.  

 

 

Fig. 4. VLAN ID packet format 

To configure a VLAN ID, the packet format used is IEEE 802.1q, as shown in Fig. 4. The 

VLAN tag consists of TPID and TCI. TPID represents the existence of a VLAN tag. VID 

classifies VLANs using 12 bits other than 0 and 0 × FF. This structure inserts a VLAN ID 

when transmitting a packet. We configured this mechanism to insert a VLAN ID into an 

existing packet through the hardware. 

 

 

Fig. 5. VLAN ID packet filtering 



2772                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

The filtering process of a VLAN ID packet is shown in Fig. 5, which is an Rx flow of an Intel 

82599 hardware platform chipset. When VLAN packets are received, the VLAN filter process 

classifies each one. First, the packet goes through the L2 filter. The VLAN filter in the 

hypervisor then checks the VLAN ID of the packet to determine which VM is the packet 

destination. Thus, a virtual router can know the virtual cloud network of the received packets. 

A packet of a particular virtual cloud network must be processed in that virtual router. The 

VLAN filter supports packet switching, which determines whether to strip the MAC header. A 

non-stripped packet will be delivered to the host in a VLAN, and a stripped packet will be 

delivered to a physical host. We configured this work to utilize hardware processing to 

improve the virtual network performance. 

3.4 Improving the Throughput of a Virtualized Network with SR-IOV 

Fig. 6 shows the router virtualization architecture of our system. A virtualized network is 

created using this architecture, which is configured for network and performance isolation. 

The hardware platform shown in Fig. 6 is an Intel 82599 10 Gigabit Ethernet network 

interface card, and we use a Xen hypervisor as a virtual machine manager (VMM). There are 

several domains in the Xen hypervisor, Domain0 (Dom0), and Guest Domains (VM1, VM2, 

(VM: Virtual Machine)).  

The NIC is separated into several virtual interfaces such as a PF and VF by SR-IOV, which 

supports virtualization. The PF is assigned to Dom0 directly in a PCI express (PCIe) supported 

environment. Therefore, the PF has an independent network interface with no influence from 

other domains. SR-IOV can create several VFs that have a relatively light PCIe function. VFs 

are assigned to each virtual machine, and they provide isolated communication, which is 

controlled by the VM. The PF and VF can work as a single dedicated NIC, which is controlled 

by each domain directly. Each VF sets the initial configuration through an I/O virtual machine 

(IOVM), which is the SR-IOV manager of Dom0. The VF then uses direct memory access 

(DMA) for communication after the initial configuration. 

 

 

Fig. 6. Virtualized network interface with SR-IOV 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2773 

 

4. Performance Isolation of Virtualized Cloud Network 

4.1 Traffic Control Using BCN 

A traffic controller for a virtual network platform is implemented by managing the bandwidth 

of each virtual cloud network. As previously mentioned, several virtualized networks coexist 

on one physical network. This means that the maximum bandwidth offered for a virtual 

network is the maximum value of the physical network. Therefore, several different 

bandwidths within the range of the maximum bandwidth are needed to accommodate each 

virtual cloud network. Some cloud services require a greater amount of bandwidth than other 

cloud services. For instance, the real-time video streaming service of a cloud network requires 

a large bandwidth. In this case, it requires bandwidth control and re-assignment. This 

technique is called performance isolation, which is the management and distribution of the 

available network bandwidth. 

In a virtualized system architecture, as shown Fig. 6, the offered bandwidth of each domain 

is determined by how often the domain occupies the NIC. In this study, we implemented 

performance isolation by controlling the NIC occupancy rate of each domain. To make this 

technique possible, we use backward congestion notification (BCN) [8], which is supported in 

SR-IOV. 

Fig. 7 shows the BCN rate scheduler used to apply performance isolation. The descriptor 

fetch arbiter allocates a packet to send to the assigned pool from the memory ring buffer. Pool0 

and Pool1 in the VFs existing on the NIC are assigned to VM1 and VM2, respectively. BCN 

registers in the descriptor queue (DQ) are present inside each pool. The throughput and 

packet-buffer sharing values differ based on how the value of the register allocation is set. The 

maximum rate scheduler allocates less bandwidth assigned to the register. If the bandwidth is 

increased over the assigned value, the BCN bridge should be disconnected.  

The order of packet transmission is essentially based on a round-robin method. A pool 

satisfying the register value receives a connection to the DQ and occupies the packet buffer 

and communication. This means that the packet of the virtual domain occupying the 

corresponding pool is transmitted through the NIC. 

 

 

Fig. 7. Scheduling used for dynamic bandwidth allocation  



2774                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

4.2 Weight-based Bandwidth Control 

To support flexible bandwidth allocation based on the demand of each cloud service, we 

suggest a weight-based bandwidth control (WBBC) algorithm on a virtual network platform. 

A virtual network platform controls the bandwidth to ensure fairness for each virtual network. 

Fig. 8 shows the architecture of the WBBC algorithm on a virtual network platform. The 

bandwidth control module (BCM) checks the bandwidth use of a virtual network through the 

bandwidth statistic register (BSR) of the NIC. It wakes up periodically according to a timer. 

Next, it decides whether descriptor fetch to pool depending on the bandwidth usage 

information of the virtual network obtained from the BSR. If the descriptor does not fetch to 

pool, it cannot transmit its packet in the NIC. Therefore, a flexible bandwidth control is 

possible.  

Determining the bandwidth allocation for each virtual machine is conducted based on the 

fetching of the descriptor from the BCM in the virtual machines as follows. The bandwidth use 

of virtual machine i (VMi) is Ti, and the weight of VMi is Wi. In addition, the bandwidth use 

of all virtual machines is Tsum, whereas the weight of all virtual machines is Wsum, which are 

shown in formula (1). 

 

   (1)  

 

The left-hand side of formula (1) represents the rate of bandwidth use of VMi, whereas the 

right-hand side indicates the VMi weight rate for the sum of all weights. Thus, if the rate of 

bandwidth use of VMi is less than the allocated weight rate, the bandwidth is allocated by 

fetching packets to pool of the NIC. On the contrary, if the rate of VMi bandwidth use is larger 

than the allocated weight rate, a transmission is not allowed. 

 

 

Fig. 8. Architecture of the WBBC algorithm 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2775 

 

4.3 Virtual-Channel Bonding 

The virtual network platform can support flexible bandwidth allocation through 

virtual-channel bonding. The virtual-channel bonding architecture is shown in Fig. 9. Each 

virtual network requires a different bandwidth allocation based on the service requirements. 

Even when multiple virtual networks are connected to the same NIC, different bandwidth 

allocations may be needed. We therefore changed the existing Linux bonding driver to support 

different types of bandwidth bonding in virtual machines.  

As shown in Fig. 9, VM1 requires 12 Gbps of bandwidth. In this case, the V-channel 

module divides the bandwidth into 10 and 2 Gbps bandwidths. It then offers the required 2 

Gbps bandwidth to create more VF links using another 10 Gb NIC. As such, it can support 

load balancing to alter the bandwidth. The V-channel module classifies packets depending on 

the amount of bandwidth. The bandwidth allocation is determined based on the rate of each 

bandwidth within the total bandwidth of each virtual network. 
 

 

Fig. 9. Channel bonding architecture for a virtual network 

The virtual network platform uses the port number and source and destination addresses in the 

virtual-channel bonding to minimize the problem of a mixed packet sequence for each session 

when arbitrarily allocating the NIC. The existing bonding driver does not know the amount of 

bandwidth provided by the NIC. Therefore, we implement a V-channel module that can 

receive bandwidth information provided to the NIC along with communication to the driver 

using ioctl. 

In addition, the NIC driver of the virtual machine has to know how much bandwidth is 

assigned to it. For this information, the NIC driver of each machine sends its information 

regarding the bandwidth amount to the V-channel module through a message box in SR-IOV. 

When the V-channel module receives the initialization, it checks the allocated bandwidth of 

the VF. Next, if a change occurs, the VF drivers in each machine inform the V-channel 

module. 

 



2776                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

5. Evaluation 

In this section, we discuss and verify the results of our experiment. The environment used for 

the performance validation is summarized in Table 1. In addition, Fig. 10 shows the 

configuration of the experimental environment. The virtual network platform has two or three 

VMs (variable) and supports several virtual networks.  

Table 1. Environment used for the experiment 

Machine Specification Virtual Machine Specification 

CPU Intel XEON X5650(6-cores) x2 Virtual CPU 4-cores 

Mem 12 GB Mem 2 GB 

Hypervisor Xen 4.0 
Guest OS  Ubuntu 10.04 LTS 

Kernel Linux 2.6.37.1 

NIC 
Intel 82599 10 Gigabit (SR-IOV) 

Virtual NIC 
E1000 (Xen PV NIC model) 

Intel 82576 1 Gigabit (SR-IOV) Igbvf (Intel 82576/82599 VF) 

Sender/Receiver Intel i7 CPU / Intel 82599 10G NIC, Intel 82576 1G NIC 

 

 

Fig. 10. Configuration of the experimental environment 

5.1 Performance Improvement through SR-IOV 

Table 2 lists the improvements in throughput performance for the virtual machine with and 

without the use of SR-IOV. We drew a comparison between a Xen PV NIC (E1000) and an 

Intel 82576 1 G NIC. E1000 basically supports a virtual NIC, which is emulated in Xen. This 

virtual NIC has 1 gigabit capacity. Therefore, we used an Intel 82576 1 G NIC, which supports 

SR-IOV, to compare the performance improvement of the SR-IOV. The results of the 

experiment are expressed in terms of bandwidth (Mbps) and packets per second (pps) for a 

packet size of 64 bytes, which is the minimum Ethernet packet size. We measured the 

performance using the Iperf [25] network benchmark for 300 s. As a result, there was a 25-fold 

performance enhancement compared to when SR-IOV was not used. 

Table 2. Performance comparison with and without the use of SR-IOV 

Configuration Packet bytes Throughput (pps) Throughput (Mbps) 

Xen PV (E1000) 64 Bytes 49,910 pps 25 Mbps 

Xen PV with SR-IOV 64 Bytes 1,123,831 pps 575 Mbps 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2777 

 

5.2 Performance Isolation Using BCN 

Table 3 shows the results of the performance isolation among the VMs in an isolated virtual 

network with a 10 G NIC. State in Table 3 indicates the method of bandwidth allocation for 

each VM. VM BCN Rate is the allocated bandwidth to the VMs, and Sum is a summation of 

the VM bandwidths. We divided the states into three types based on a bandwidth summation: 

non-saturated, saturated, and over-saturated state. We used pktgen [26] and set the traffic to 

constant bit rate (CBR) using 1500 bytes packet size. The results in Table 3 show the 

measured bandwidth of each VM. The reached ratio to expected value shows that how close 

the measured value of bandwidth is to expected value, which is a measurement indicator of our 

proposed system. 

Table 3. Performance isolation results  

State 

Configuration 
(Mbps) 

Expected 
Total 
Value 

Results Reached 
Ratio to 
Expected 
Value 
(%) 

VM1 
BCN 
Rate 

VM2 
BCN 
Rate 

Rate 
Sum 

VM1 
BW  

(Mbps) 

VM2 
BW  

(Mbps) 

BW Sum  
(Mbps) 

1:1 1000 1000 2000 995 995 1990 99.50 

1:1 2000 2000 4000 1988 1994 3982 99.55 

1:1 3000 3000 6000 2986 2973 5959 99.32 

1:1 4000 4000 8000 3895 3869 7764 97.05 

non-saturated 1000 3000 4000 996 2987 3983 99.58 

non-saturated 1000 7000 8000 996 6887 7883 98.54 

non-saturated 2000 1000 3000 1983 994 2977 99.23 

non-saturated 2000 5000 7000 1994 4968 6962 99.46 

non-saturated 3000 1000 4000 992 2985 3977 99.43 

non-saturated 5000 3000 8000 4848 2992 7840 98.00 

non-saturated 8000 1000 9000 7739 997 8736 97.07 

saturated 1:1 5000 5000 10000 4811 4853 9664 96.64 

saturated 2000 8000 10000 1990 7985 9975 99.75 

saturated 3000 7000 10000 2986 6891 9877 98.77 

saturated 4000 6000 10000 3873 5987 9860 98.60 

saturated 8000 2000 10000 7806 1994 9800 98.00 

over-saturated 3000 9000 12000 2412 7439 9851 98.51 

over-saturated 5000 6000 11000 4507 5378 9885 98.85 

over-saturated 5000 7000 12000 4809 4836 9645 96.45 

over-saturated 8000 3000 11000 7199 2691 9890 98.90 

over 1:1 7000 7000 14000 4825 4968 9793 97.93 

over 1:1 8000 8000 16000 4783 4841 9624 96.24 

over 1:1 9000 9000 18000 4895 4823 9718 97.18 

 

The first case is non-saturated state, which occurs when the summation of the allocated 

bandwidth of each VM does not exceed the maximum capacity of the 10G NIC. In this case, if 

we allocate the bandwidth to each VM at the same rate, we achieve a resulting bandwidth rate 



2778                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

of 1:1. The summation of each bandwidth also shows a performance of at least a 97% or 

greater as compared with the expected bandwidth. For different rates, on the other hand, it 

works as allocated rate, which shows a similar performance result. 

In the second case, a saturated state the summation of allocated bandwidths of each VM is 

10 G. If the bandwidth rates of all VMs are equal, then the rate is 5000:5000. In this case, the 

result of each VM is close to the allocated rate, and the total throughput is close to the 

maximum capacity. Even if the bandwidth allocation rates differ, each VM operates using its 

allocated rate. Likewise, the total bandwidth reaches the maximum capacity of the NIC.  

Finally, when the total allocated bandwidth exceeds the maximum capacity of the NIC, the 

maximum throughput does not exceed 10 G. Therefore, each VM operates at the allocated rate 

within a range that does not exceed the limitation whether the allocated bandwidth rates of all 

VM are the same. Consequently, the results of over-saturated state are similar to the saturation 

state and the maximum capacity is reached. 

As shown in Table 3, performance isolation adjusts the bandwidth balance of each VM. 

Therefore, performance isolation can be ensured with the QoS of each virtual cloud network, 

and it manages bandwidth resources efficiently.  

5.3 Weight-based Bandwidth Allocation 

We configured three VMs, each with a bandwidth weight of 6:3:1, to show the fairness of a 

virtual cloud network using the WBBC algorithm in a 10 G NIC. The initial bandwidth of each 

VM is 1:1:1 until the bandwidth control module (BCM) is called, at which point the initial 

bandwidth rate begins to change. Fig. 11 shows the change in bandwidth rate using the BCM. 

The bandwidth rate converges to a set weight as time passes. This mechanism is suitable for 

various cloud services that have different priorities based on the charging policy or popularity. 

Therefore, the WBBC algorithm used in our system can ensure flexible bandwidth allocation. 

 

 

Fig. 11. Bandwidth rate control 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2779 

 

Table 4 shows the throughput achieved through this mechanism. The total throughput 

bandwidths for each case approach nearly 10 Gbps as shown Table 4. The WBBC divides the 

bandwidth of each VM based on the pre-assigned weights. We can also see that the accuracies 

are very similar between the weight ratio and throughput bandwidth ratio. The largest error in 

the ratio of allocated weight to the resulting bandwidth is less than 4%, and the average total 

throughput is 9455 Mbps, which means the WBBC achieves a high performance with a 

maximum capacity of 94.55%. Therefore, we argue that our suggested method can allocate 

bandwidth efficiently based on this rate. Through this, our system can manage the bandwidth 

allocation of each VM based on the weight of each cloud service on each VM. This can be 

applied to the use of a virtual network for providing cloud services based on the importance or 

billing policy of each cloud service from the perspective of the ISP.  

Table 4. Throughput based on the allocated weight 

Allocated Weight Throughput (Mbps) Result of Bandwidth Ratio 

VM1:VM2:VM3 VM1 VM2 VM3 Total VM1:VM2:VM3 

1 : 1 : 1 3144 3144 3144 9432 1 : 1 : 1 

1 : 1 : 2 2383 2383 4695 9461 1 : 1 : 1.97 

1 : 1 : 3 1902 1826 5725 9453 1 : 0.96 : 3.01 

1 : 1 : 4 1587 1587 6316 9490 1 : 1 : 3.98 

1 : 1 : 5 1341 1381 6732 9454 1 : 1.03 : 5.02 

1 : 2 : 3 1576 3135 4711 9422 1 : 1.99 : 2.99 

1 : 2 : 4 1355 2724 5366 9444 1 : 2.01 : 3.96 

1 : 2 : 5 1177 2354 5909 9440 1 : 2 : 5.02 

2 : 1 : 2 3772 1886 3772 9430 2 : 1 : 2 

2 : 1 : 4 2696 1388 5356 9449 2 : 1.03 : 3.98 

2 : 1 : 6 2094 1058 6273 9425 2 : 1.01 : 5.99 

2 : 3 : 4 2093 3150 4185 9428 2 : 3.01 : 4 

2 : 3 : 5 1890 2835 4706 9431 2 : 3 : 4.98 

3 : 1 : 2 4728 1592 3152 9472 3 : 1.01 : 2 

3 : 2 : 1 4758 3140 1586 9484 3 : 1.98 : 1  

3 : 4 : 3 2847 3787 2856 9490 3 : 3.99 : 3.01 

3 : 5 : 2 2826 4710 1894 9430 3 : 5 : 2.01 

4 : 1 : 3 4732 1183 3573 9488 4 : 1 : 3.02 

4 : 5 : 1 3792 4702 967 9461 4 : 4.96 : 1.02 

5 : 1 : 2 5895 1167 2393 9456 5 : 0.99 : 2.03 

6 : 3 : 1 5694 2819 958 9471 6 : 2.97 : 1.01 

7 : 2 : 1 6657 1902 932 9491 7 : 2 : 0.98 

8 : 1 : 1 7568 937 946 9451 8 : 0.99 : 1 

 

5.4 Flexible Performance Using V-channel 

Table 5 shows the total throughput of the channel bonding when our algorithm is 

implemented using two 10 G Ethernet NICs. When the allocated bandwidth is 20 G using the 



2780                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

two bonded 10 G NICs, the total throughput is 15.2 Gbps. This result is 76% of the expected 

value. The allocated bandwidth is 5 G in the same environment, resulting in 9 Gbps, which is 

90% of the expected value of 10 G. The performance did not approach the expected value. 

Based on our analysis of previous studies, we believe the reason for this shortcoming in terms 

of the expected performance is insufficient hardware support [27]. 

Table 5. Throughput based on the allocated bandwidth in V-channel 

Allocation of Bandwidth Bonding Total Throughput (Gbps) 

10 G – 10 G 15.2 Gbps 

5 G – 5 G 9.0 Gbps 

 

We conducted another experiment on the V-channel by dividing the throughput rate in one 

VM through two 10 G NICs. Table 6 shows the results. We configured a 9 Gbps bandwidth, 

which is assumed to be the required bandwidth of a VM for certain cloud services. We did not 

go over 10 G as the hardware cannot support full capacity saturation of the bonded NICs, as 

shown in Table 5. We also configured a packet size of 64 bytes. Table 6 shows the throughput 

based on the configuration of the interface when limited to 3 Gbps and 6 Gbps in a 1:2 ratio. In 

other words, a virtual cloud service (VM) requires a 9-Gbps bandwidth, and a V-channel 

system divides this bandwidth into 6 and 3 Gbps in a 2:1 ratio. The V-channel system then 

uses 6 Gbps through Eth1 (NIC1) and 3 Gbps through Eth2 (NIC2). Eth1 and Eth2 provide a 

2:1 bandwidth ratio, where the throughputs are 9375 and 5664 Kpps, which is the same 2:1 

ratio as we used.  

Table 6. Results from dividing the bandwidth between two NICs using V-channel. 

Interface Allocated Bandwidth (Gbps) Packet Size Throughput (Kpps) 

Eth1(NIC1) 6Gbps 64bytes 9375Kpps (4800Mbps) 

Eth2(NIC2) 3Gbps 64bytes 5664Kpps (2900Mbps) 

6 Conclusion and Future works 

A network virtualization technology is the key technology used to support cloud computing. In 

this paper, we suggested a virtual network platform to support various cloud services 

independently on a physical network. In addition, we suggested communication methods with 

effective bandwidth management to ensure a better quality for each cloud service. 

Virtualization technology can provide diversity, which is a major advantage for cloud services. 

In terms of diversity, this advantage can satisfy the many requirements of cloud computing 

such as scalability, availability, reliability, and flexibility. To ensure these requirements of 

cloud computing, network isolation is required, and we therefore implement a network 

isolation scheme using VLAN ID.  

The network isolation indicates the existence of perfectly isolated virtual networks among 

other virtual networks. Using such isolation, we can expect a high integrity of each cloud 

service on several virtual networks. A suitable performance of each cloud service should be 

ensured to provide the QoS in an isolated network. Thus, we suggest the use of performance 

isolation, which assures a dynamically allocated bandwidth to each virtual cloud network. We 

implemented several performance isolation techniques including dynamic bandwidth 

allocation using BCN, weight-based bandwidth allocation, and virtual-channel bonding. As 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2781 

 

we showed previously, a balanced bandwidth allocation for a better quality of service can be 

granted through performance isolation.  

In this study, we implemented our schemes on a Xen hypervisor, which can provide 

flexible virtualization. We also used an Intel 82599 10 G NIC as a network interface. 

Moreover, we utilized the SR-IOV technique to improve the throughput performance of our 

virtual router platform. For future research, hardware support and optimization techniques are 

required to improve the V-channel performance. We will also perform experiments on 

transmitting real data in conjunction with a large-scale test bed such as KREONET [28]. We 

expect that this current study will be a useful testbed platform for further Internet research on 

cloud computing. 

References 

[1] Zhang Q, Cheng L, Boutaba R (2010) “Cloud computing: state-of-the-art and research 

challenges.” Journal of Internet Services and Applications, vol. 1, issue 1, pp 7-18, May 2010.  

Article (CrossRef Link)  

[2] N. Chowdhury, "A survey of network virtualization," Computer Networks, Jan. 2010. Article 

(CrossRef Link) 

[3] Van Jacobson , Diana K. Smetters , James D. Thornton , Michael F. Plass , Nicholas H. Briggs , 

Rebecca L. Braynard, “Networking named content”, In Proc/ of the 5th international conference 

on Emerging networking experiments and technologies, Dec. 2009. Article (CrossRef Link) 

[4] A. Vakali and G. Pallis, "Content delivery networks: status and trends," IEEE Internet Computing, 

vol. 7, no. 6, pp.  68- 74, 2003. Article (CrossRef Link) 

[5] N. Egi, A. Greenhalgh, M. Handley, M. Hoerdt, F. Huici, and L. Mathy, "Towards high 

performance virtual routers on commodity hardware," In Proc. of the 2008 ACM CoNEXT 

Conference, p. 20, 2008. Article (CrossRef Link) 

[6] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt, and A. 

Warfield, “Xen and the art of virtualization,”In Proc. of the nineteenth ACM symposium on 

Operating systems principles, Oct. 2003. Article (CrossRef Link) 

[7] Xen homepage, http://xen.org   

[8] Intel Corporation, Intel® 82599 Gigabit Ethernet Controller Datasheet. http://www.intel.com  

[9] Y. Dong, et al. “SR-IOV Networking in Xen: Architecture, Design and Implementation”. 1st 

Workshop on I/O Virtualization, San Diego, CA, 2008. Article (CrossRef Link)  

[10] VMware, http://www.vmware.com/  

[11] Tutschku, K., Zinner, T., Nakao, A., & Tran-Gia, P. “Network virtualization: implementation steps 

towards the future internet”. In Proc. of the workshop on overlay and network virtualization at 

KiVS, Kassel, Germany, Mar. 2009. Article (CrossRef Link)   

[12] N. Chowdhury, "Network virtualization: state of the art and research challenges," Communications 

Magazine, vol 47, no. 7, pp. 20-26, Jan. 2009. Article (CrossRef Link)  

[13] B. Chun, D. Culler, and T. Roscoe, "PlanetLab: An Overlay Testbed for BroadCoverage Services", 

ACM SIGCOMM Computer Communcation, Vol. 33, Issue 3, Jul. 2003. Article (CrossRef Link) 

[14] NetServ, NSF project, http://www.cs.columbia.edu/irt/project/netserv  

[15] GENI (Global Environment for Network Innovations), NSF project, http://www.geni.net  

[16] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek, "The click modular router," ACM 

Transactions on Computer Systems, vol. 18, no. 3, p. 263-297, Aug. 2000. Article (CrossRef Link) 

[17] N. McKeown et al., "OpenFlow: enabling innovation in campus networks," ACM SIGCOMM 

Computer Communication Review, vol. 38, no. 2, p. 69-74, Mar. 2008. Article (CrossRef Link) 

[18] M. Handley, O. Hodson, and E. Kohler, "XORP: an open platform for network research," ACM 

SIGCOMM Computer Communication Review, vol. 33, no. 1, p. 53-57, Jan. 2003. Article 

(CrossRef Link) 



2782                                                                   Ahn et al.: Isolation Schemes of Virtual Network Platform for Cloud Computing  

 

[19] Sangjin Han, Keon Jang, KyoungSoo Park and Sue Moon, "PacketShader: a GPU-accelerated 

Software Router,"In Proc. of ACM SIGCOMM 2010, Delhi, India. September 2010. Article 

(CrossRef Link) 

[20] R. Housley , S. Hollenbeck, "EtherIP: Tunneling Ethernet Frames in IP Datagrams," RFC 3378, 

2002. Article (CrossRef Link)  

[21] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, "Generic routing encapsulation (GRE)," 

RFC 2784, Internet Engineering Task Force, Mar. 2000. Article (CrossRef Link)  

[22] Rosen, E., Viswanathan, A., and R. Callon, "Multiprotocol Label Switching Architecture", RFC 

3031, January 2001. Article (CrossRef Link) 

[23] ANSI/IEEE Standard 802.1Q, "IEEE Standards for Local and Metropolitan Area Networks: 

Virtual Bridged Local Area Networks", IEEE 802.1q, 1998. Article (CrossRef Link)  

[24] Intel Virtualization Technology. Article (CrossRef Link) 

[25] Iperf version 2.0.5, http://sourceforge.net/projects/iperf/?abmode=1  

[26] Pktgen, http://www.linuxfoundation.org/collaborate/workgroups/networking/pktgen   

[27] Aust, S.; Jong-Ok Kim; Davis, P.; Yamaguchi, A.; Obana, S.; , "Evaluation of Linux Bonding 

Features," Communication Technology, 2006. ICCT '06. International Conference on , vol., no., 

pp.1-6, 27-30, Nov. 2006 Article (CrossRef Link)  

[28] KREONET, http://www.kreonet.net/   

 

 

 
Sung-Won Ahn received B.S. degrees in department of Computer Science, Korea University 

in 2006, and M.S degrees in department of Computer Science and Engineering from Korea 

University, Seoul, Korea in 2008. Since 2008, he has been studying his Ph.D. degree in 

Computer Science and Engineering from Korea University, Seoul, Korea. His current 

research interests include Network topology, Cloud computing, Virtualization and Media 

streaming. 

 

 

 

ShinHyoung Lee received B.S. degree in earth environment science from Korea University, 

Seoul, Korea, and an M.S. degree in computer science from Korea University. His research 

interests include wireless networking, multimedia streaming, and network virtualization. 

 

 

 

 

 

 

Seehwan Yoo received B.S. and M.S. degrees in computer science from Korea University, 

Seoul, Korea, in 2002 and 2004, respectively. He is currently a Ph.D. candidate at Korea 

University, Seoul, Korea. His current research interests are in embedded and mobile systems 

virtualization and real-time scheduling. 

 

 

 

 

 

 

DaeYoung Park received B.S. degrees in department of Computer Science, Korea 

University, Seoul, Korea in 2010. Since 2010, he has been studying his M.S. degree 

in Computer Science and Engineering from Korea University, Seoul, Korea. His 

research interests include Cloud computing and Virtualization and network 

virtualization. 

 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 6, NO. 11, Nov 2012                                    2783 

 

Dojung Kim received B.S. degrees in department of Computer Science, Korea 

University, Seoul, Korea in 2010. Since 2010, he has been studying his M.S. degree 

in Computer Science and Engineering from Korea University, Seoul, Korea. His 

current research interests include network virtualization and media streaming. 
 

 

 

 

Chuck Yoo received B.S. and M.S. degrees in electronic engineering from Seoul 

National University, Seoul, Korea, and an M.S. degree and Ph.D. in computer 

science from University of Michigan. He worked as a researcher in Sun 

Microsystems Laboratory from 1990 to 1995. He is now a professor in the 

Department of Computer Science and Engineering, Korea University, Seoul, Korea. 

His research interests include high performance network, multimedia streaming, 

operating systems, and virtualization. He served as a member of the organizing 

committee for NOSSDAV 2001.  

 


