• 제목/요약/키워드: Science Cloud

검색결과 1,607건 처리시간 0.022초

A Novel Methodology for Auditing the Threats in Cloud Computing - A Perspective based on Cloud Storage

  • Nasreen Sultana Quadri;Kusum Yadav;Yogesh Kumar Sharma
    • International Journal of Computer Science & Network Security
    • /
    • 제24권2호
    • /
    • pp.124-128
    • /
    • 2024
  • Cloud computing is a technology for delivering information in which resources are retrieved from the internet through a web-based tools and applications, rather than a direct connection with the server. It is a new emerging computing based technology in which any individual or organization can remotely store or access the information. The structure of cloud computing allows to store and access various information as long as an electronic device has access to the web. Even though various merits are provided by the cloud from the cloud provides to cloud users, it suffers from various flaws in security. Due to these flaws, data integrity and confidentiality has become a challenging task for both the storage and retrieval process. This paper proposes a novel approach for data protection by an improved auditing based methodology in cloud computing especially in the process of cloud storage. The proposed methodology is proved to be more efficient in auditing the threats while storing data in the cloud computing architecture.

Review Of Some Cryptographic Algorithms In Cloud Computing

  • Alharbi, Mawaddah Fouad;Aldosari, Fahd;Alharbi, Nawaf Fouad
    • International Journal of Computer Science & Network Security
    • /
    • 제21권9호
    • /
    • pp.41-50
    • /
    • 2021
  • Cloud computing is one of the most expanding technologies nowadays; it offers many benefits that make it more cost-effective and more reliable in the business. This paper highlights the various benefits of cloud computing and discusses different cryptography algorithms being used to secure communications in cloud computing environments. Moreover, this thesis aims to propose some improvements to enhance the security and safety of cloud computing technologies.

SmartX-mini Playground 상의 IoT-Cloud 서비스에 대한 SDN 기반 모니터링 데이터 수집 경로 설정 (SDN-Based Collection-path Steering for IoT-Cloud Service Monitoring Data over SmartX-mini Playground)

  • 윤희범;김승룡;김종원
    • 한국통신학회논문지
    • /
    • 제41권11호
    • /
    • pp.1598-1607
    • /
    • 2016
  • 부상하는 IoT-Cloud 서비스들을 효율적으로 지원하기 위해서는 IoT-Cloud 간의 안정적이고 지속적인 데이터 전송이 필수적이다. 본 논문에서는 초융합형 SmartX Box에 기반한 SmartX-mini Playground 상에서 IoT-Cloud 서비스를 위한 다양한 모니터링 데이터를 보다 안정되게 수집/전송함에 있어서 오픈소스 메시징 시스템인 Kafka를 활용하고 ONOS(Open Network Operation System) SDN 제어기에 기반한 SDN 응용을 적용함으로써 실제적인 IoT-SDN-Cloud 환경에서의 안정적인 IoT-Cloud 서비스에 대응하는 모니터링 데이터 전송을 위한 유연한 수집 경로 설정이 가능함을 확인한다.

A Survey on Cloud Storage System Security via Encryption Mechanisms

  • Alsuwat, Wejdan;Alsuwat, Hatim
    • International Journal of Computer Science & Network Security
    • /
    • 제22권6호
    • /
    • pp.181-186
    • /
    • 2022
  • Cloud computing is the latest approach that is developed for reducing the storage of space to store the data and helps the quick sharing of the data. An increase in the cloud computing users is observed that is also making the users be prone to hacker's attacks. To increase the efficiency of cloud storage encryption mechanisms are used. The encryption techniques that are discussed in this survey paper are searchable encryption, attribute-based, Identity-based encryption, homomorphic encryption, and cloud DES algorithms. There are several limitations and disadvantages of each of the given techniques and they are discussed in this survey paper. Techniques are found to be effective and they can increase the security of cloud storage systems.

Semantic Interoperability Framework for IAAS Resources in Multi-Cloud Environment

  • Benhssayen, Karima;Ettalbi, Ahmed
    • International Journal of Computer Science & Network Security
    • /
    • 제21권2호
    • /
    • pp.1-8
    • /
    • 2021
  • Cloud computing has proven its efficiency, especially after the increasing number of cloud services offered by a wide range of cloud providers, from different domains. Despite, these cloud services are mostly heterogeneous. Consequently, and due to the rising interest of cloud consumers to adhere to a multi-cloud environment instead of being locked-in to one cloud provider, the need for semantically interconnecting different cloud services from different cloud providers is a crucial and important task to ensure. In addition, considerable research efforts proposed interoperability solutions leading to different representation models of cloud services. In this work, we present our solution to overcome this limitation, precisely in the IAAS service model. This solution is a framework permitting the semantic interoperability of different IAAS resources in a multi-cloud environment, in order to assist cloud consumers to retrieve the cloud resource that meets specific requirements.

Secure Data Sharing in The Cloud Through Enhanced RSA

  • Islam abdalla mohamed;Loay F. Hussein;Anis Ben Aissa;Tarak kallel
    • International Journal of Computer Science & Network Security
    • /
    • 제23권2호
    • /
    • pp.89-95
    • /
    • 2023
  • Cloud computing today provides huge computational resources, storage capacity, and many kinds of data services. Data sharing in the cloud is the practice of exchanging files between various users via cloud technology. The main difficulty with file sharing in the public cloud is maintaining privacy and integrity through data encryption. To address this issue, this paper proposes an Enhanced RSA encryption schema (ERSA) for data sharing in the public cloud that protects privacy and strengthens data integrity. The data owners store their files in the cloud after encrypting the data using the ERSA which combines the RSA algorithm, XOR operation, and SHA-512. This approach can preserve the confidentiality and integrity of a file in any cloud system while data owners are authorized with their unique identities for data access. Furthermore, analysis and experimental results are presented to verify the efficiency and security of the proposed schema.

Multi-factor Evolution for Large-scale Multi-objective Cloud Task Scheduling

  • Tianhao Zhao;Linjie Wu;Di Wu;Jianwei Li;Zhihua Cui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제17권4호
    • /
    • pp.1100-1122
    • /
    • 2023
  • Scheduling user-submitted cloud tasks to the appropriate virtual machine (VM) in cloud computing is critical for cloud providers. However, as the demand for cloud resources from user tasks continues to grow, current evolutionary algorithms (EAs) cannot satisfy the optimal solution of large-scale cloud task scheduling problems. In this paper, we first construct a large- scale multi-objective cloud task problem considering the time and cost functions. Second, a multi-objective optimization algorithm based on multi-factor optimization (MFO) is proposed to solve the established problem. This algorithm solves by decomposing the large-scale optimization problem into multiple optimization subproblems. This reduces the computational burden of the algorithm. Later, the introduction of the MFO strategy provides the algorithm with a parallel evolutionary paradigm for multiple subpopulations of implicit knowledge transfer. Finally, simulation experiments and comparisons are performed on a large-scale task scheduling test set on the CloudSim platform. Experimental results show that our algorithm can obtain the best scheduling solution while maintaining good results of the objective function compared with other optimization algorithms.

Systematic Literature Review on Cloud Adoption

  • Bagiwa, Idris Lawal;Ghani, Imran;Younas, Muhammad;Bello, Mannir
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제8권2호
    • /
    • pp.1-22
    • /
    • 2016
  • While many organizations believe that cloud computing has the potential to reduce operational cost by abstracting capital assets like data storage center and processing systems into a readily on demand available and affordable operating expenses, still many of these organizations are not aware of the factors determining the performance of cloud computing technology. This paper provides a systematic literature review focusing on the factors determining the performance of cloud computing. In trying to come up with this review, the following sources were searched for relevant articles: ScienceDirect, Scientific.Net, ACMDigital Library, IEEE Xplore, Springer, World Scientific Journal, Wiley Online Library, Academic Search Premier (via EBSCOHost) and EdITLib (Education & Information Technology Digital Library). In first search strategy, approximately 100 keywords related to the research domain like; "Cloud Computing" and "Cloud Services" were used. In second search strategy, 65 keywords more related to the research domain were selected. In the third search strategy, the primary materials were identified and classified according to the paper types (Journal or Conference), year of publication and so on. Based on this study, twenty (20) factors were found that determine the performance of cloud computing. The IT organization needs to consider these twenty (20) factors in order to adopt cloud computing.

Experience in Practical Implementation of Abstraction Interface for Integrated Cloud Resource Management on Multi-Clouds

  • Kim, Huioon;Kim, Hyounggyu;Chun, Kyungwon;Chung, Youngjoo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권1호
    • /
    • pp.18-38
    • /
    • 2017
  • Infrastructure-as-a-Service (IaaS) clouds provide infrastructure as a pool of virtual resources, and the public IaaS clouds, e.g. Amazon Web Service (AWS) and private IaaS cloud toolkits, e.g. OpenStack, CloudStack, etc. provide their own application programming interfaces (APIs) for managing the cloud resources they offer. The heterogeneity of the APIs, however, makes it difficult to access and use the multiple cloud services concurrently and collectively. In this paper, we explore previous efforts to solve this problem and present our own implementation of an integrated cloud API, which can make it possible to access and use multiple clouds collectively in a uniform way. The implemented API provides a RESTful access and hides underlying cloud infrastructures from users or applications. We show the implementation details of the integrated API and performance evaluation of it comparing the proprietary APIs based on our cloud testbed. From the evaluation results, we could conclude that the overhead imposed by our interface is negligibly small and can be successfully used for multi-cloud access.

Building On/off Attacks Detector for Effective Trust Evaluation in Cloud Services Environment

  • SALAH T. ALSHAMMARI;AIIAD ALBESHRI;KHALID ALSUBHI
    • International Journal of Computer Science & Network Security
    • /
    • 제24권7호
    • /
    • pp.101-107
    • /
    • 2024
  • Cloud computing is a widely used technology that has changed the way people and organizations store and access information. This technology is quite versatile, which is why extensive amounts of data can be stored in the cloud. Furthermore, businesses can access various services over the cloud without having to install applications. However, the cloud computing services are provided over a public domain, which means that both trusted and non-trusted users can access the services. Though there are several advantages of cloud computing services, especially to business owners, various challenges are also posed in terms of the privacy and security of information and online services. A kind of threat that is widely faced in the cloud environment is the on/off attack. In this kind of attack, a few entities exhibit proper behavior for a given time period to develop a highly a positive reputation and gather trust, after which they exhibit deception. A viable solution is provided by the given trust model for preventing the attacks. This method works by providing effective security to the cloud services by identifying malicious and inappropriate behaviors through the application of trust algorithms that can identify on-off attacks.