• Title/Summary/Keyword: Schwertmannite

Search Result 24, Processing Time 0.019 seconds

Characteristics of the Dalseong Acid Mine Drainage and the Role of Schwertmannite (달성폐광산 산성광산배수의 발달특징과 슈베르트마나이트의 역할)

  • Choo, Chang-Oh;Jeong, Gyo-Cheol;Lee, Jin-Kook
    • The Journal of Engineering Geology
    • /
    • v.17 no.2 s.52
    • /
    • pp.187-196
    • /
    • 2007
  • The Dalseong acid mine drainage were studied focused on the characters of schwertmannite that controls geochemistry of the stream. Besides chemical analysis of stream water, particle size analysis, XRD SEM and TEM were performed on precipitates of streams and on wasted metalliferous ores. The AMD discharged from the abandoned mine reveals a decrease of pH and EC downward stream. Euhedral sulfur occurs as equigranular aggregates on the altered pyrite while fine acicula goethite coalesces to form cross, star, or starfish-like shapes. Water chemistry plotted on the Eh-pH diagram shows that schwertmannite and ferrihydrite are stable phases. Reddish brown precipitates consist of mostly schwertmannite with less goethite, whereas yellowish brown precipitates are composed of geothite with less schwertmannite. The particle size of precipitates ranges $d(0.1)\;0.861{\mu}m{\sim}3.769{\mu}m,\;d(0.5)\;3.984{\mu}m{\sim}15.255{\mu}m,\;and\;d(0.9)\;9.875{\mu}m{\sim}56.726{\mu}m$. Schwertmannite is characterized by equigranular spheric form. Pincushion or spicule with 100nm width and $200{\sim}300nm$length form on schwertmannite sphere with radial growth patterns. It is highly probable that reddish or yellowish brown precipitates formed in many AMDs may contain schwerhnannite. Because it can serve as sink for removing heavy elements by adsorption in AMD system, there is a need to correctly identify schwertmannite in precipitates and to characterize its phase stability.

Heavy Metal Adsorpton on AsO4-Substituted Schwertmannite (AsO4로 치환된 슈베르트마나이트의 중금속 흡착 특성)

  • Kim, Byungi-Ki;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.85-94
    • /
    • 2012
  • The $AsO_4$ ion in acid mine drainage has been known to substitute for $SO_4$ in schwertmannite and prevent schwertmannite from being converted to goethite. There have been studies on the heavy metal sorption on schwertmannite, but no experimental results have been reported on the characteristics of heavy metal sorption on $AsO_4$-substituted schwertmannite. In this study, we conducted sorption experiments of Cu, Pb, and Zn on the $AsO_4$-substituted schwertmannite at pH 4 and 6 in the solution of 3, 10, 30, and 100 mg/L concentrations. For all heavy metals, the sorbed heavy metals significantly increase at pH 6 compared with at pH 4. At both pH 4 and 6, Pb shows the highest sorption capacity and those of Cu and Zn are similar. With increasing time, the sorbed heavy meal contents increase too. However, in the case of Zn, the most sorptions occur at the initial stage and no significant increase is observed with time. Among the concentration ranges in which we conducted the experiment, the increasing trend is clear in high concentrated solutions such as 100 mg/L. We applied several sorption kinetic model and it shows that the diffusion process may be the most important factor controlling the sorption kinetics of Cu, Pb, and Zn on $AsO_4$-substituted schwertmannite. Considering the previous results that pure schwertmannite has similar sorption capacity for all three heavy metals at pH 6 and has higher sorption capacity for Cu and Pb than Zn at pH 4, our experiments indicates that substitution of $AsO_4$ for $SO_4$ on schwertmannite changes surface and sorption characteristics of schwertmannite. It also shows that $AsO_4$ contributes not only to the stability of schwertmannite, but also to the mobility of heavy metals in acid mine drainage.

Mineralogy of Ferrihydrite and Schwertmannite from the Acid Mine Drainage in the Donghae Coal Mine Area (동해탄광일대의 산성광산배수에서 침전된 페리하이드라이트와 슈워트마나이트에 대한 광물학적 연구)

  • Kim, Jeong-Jin;Kim, Soo-Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2003
  • The ochreous precipitates, reddish brown and brownish yellow in color, are pre- cipitated in the stream bottom of acid mine drainage (AMD) in the Donghae coal mine area. X-ray diffraction analysis shows that the reddish brown precipitate consists mainly of ferrihydrite with small amount of goethite, while the brownish yellow precipitate of schwertmannite. Thermal experiments show that ferrihydrite and schwertmannite partially convert to poorly-crystallized hematite at $400^{\circ}C$ and to well-crystallized hematite at $700^{\circ}C$.

Transformation of Schwertmannite to Goethite and Related Behavior of Heavy Metals (슈베르트마나이트-침철석 전이 및 이와 관련된 중금속의 거동)

  • Kim, Heon-Jung;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2011
  • The mineral phases precipitated in the swamp built for the treatment of the mine drainage of the Dalsung Mine were investigated to reveal the mineralogical changes from schwertmannite to goethite and related behavior of heavy metals. Our XRD results show that most schwertmannite were transformed to goethite except the small portions of the samples in the uppermost part. No significant morphological changes were observed in the samples during mineral transformation by SEM, indicating that this transformation process occurred not from dissolution-precipitation process, but in solid state. Among heavy metals sorbed or coprecipitated in the mineral phases, Pb and Cu concentrations were relatively higher compared with their concentrations in the mine drainage. The relative concentrations of other heavy metals show similar values. The heavy metal concentration in the minerals do not show noticeable differences from uppermost schwertmannite to lower goethite samples, indicating the transformation process without any leaching or additional sorption of heavy metals in the solid state.

Sorption and Thermal Characteristics of $AsO_4,\;SeO_3,\;CrO_4$ on Schwertmannite (슈베르트마나이트의 $AsO_4,\;SeO_3,\;CrO_4$ 흡착 및 열적 특성)

  • Keum, Gyo-Jin;Jung, Eun-Ha;Kim, Yeong-Kyoo
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.117-124
    • /
    • 2010
  • The sorption of $AsO_4,\;SeO_3,\;CrO_4$ on schwertmannite and thermal analysis of sorbed samples were carried out. The results of sorption experiments showed that sorption characteristics of those three oxyanions on schwertmannite can be divided into two groups. The extent of sorption of $AsO_4$ and $SeO_3$ were 100% at up to 1 mM solution concentration, and they increased no more significantly. This can be interpreted as $AsO_4$ and $SeO_3$ substituting $SO_4$ in schwertmannite strucure by the ratio of 1 : 1. The extent of the sorption of $CrO_4$ was much lower than those of other two oxyanions. Thermal analysis was performed using two kinds of sorbed samples at 0.1 and 1.25 mM concentrations. The results of the thermal analysis showed that the samples sorbed by three different oxyanions have different thermal characteristics. The samples sorbed by $AsO_4$ showed smaller weight loss around $600^{\circ}C$ than the original loss of pure schwertmannite, and it is attributed to the substitution of $AsO_4$ for $SO_4$, which was caused by the loss of $SO_4$, than pure schwertmannite due to the substitution of $SO_4$ by $AsO_4$. It also showed additional weight loss around $600^{\circ}C$ due to the decomposition of $AsO_4$ at that temperature. The weight loss of samples sorbed by $SeO_3$ started at slightly lower temperature than that sorbed by $SO_4$ and kept that loss at wider temperature range, probably indicating that the decomposition of $SeO_3$ occurs at slightly lower temperature. However, for the samples sorbed by $CrO_4$, the weight loss caused by the decomposition of $SO_4$ was also smaller and there was no additional weight loss at higher temperature due to the thermal stability of $CrO_4$, indicating that $SO_4$ was also substituted by $CrO_4$ in schwertmannite. Sorption experiment and thermal analysis indicate that $CrO_4$ sorbs on schwertmannite by substiuting $SO_4$, but the affinity to $SO_4$ or instability of $CrO_4$ in scwertmannite structure probably prohibit perfect 1 : 1 substitution.

Formation of Alunite and Schwertmannite under Oxidized Condition and Its Implication for Environmental Geochemistry at Dalseong mine (산화환경하에서 명반석, 슈베르트마나이트의 형성특징과 환경지구화학적 의미: 달성광산)

  • 추창오;이진국;조현구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.17 no.1
    • /
    • pp.37-47
    • /
    • 2004
  • Sulfates such as alunite and schwertmannite formed under oxidation condition play a important role in geochemical processes taken place at waste dumps and a creek from Dalseong mine, Daegu. Water chemistry shows pH decreases from upstream toward downstream creek, mainly due to formation of schwertmannite that is the most abundant phase along the creek. The removal of Al from the creek is preferentially attributed to formation of Al-bearing minerals and Al-sulphates. Among them, alunite is the most important Al-sink phase that occurs at higher pH than $pK_1$, Al hydrolysis constant. With high saturation index, alunite formed at the creek has a spherical form, commonly associated with schwertmannite. Secondary minerals formed on the surface of altered or weathered surfaces of heavy metals from the wasted dump that underwent severe oxidation, where alunite has characteristic habits which are spheric, radiating, and botrytis-like aggregates. Natroalunite occurs in association with alunite, or as mixtures of both of them. Because the pH decreases with distance due to formation of schwertmannite, although total contents of dissolved ions slowly lessen at least in the AMD, it is expected that the minerals precipitated at the creek can be exposed to subsequent dissolution, which may induce possible environmental problems.

Adsorption Characteristics of As, Cu, and Cd Using Precipitates from Dalseong Mine (달성광산 산성광산배수 침전물에 대한 As, Cu, Cd 흡착 특성 연구)

  • Byun, Hyun Suk;Kim, Young Hun;Kim, Jeong Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.195-204
    • /
    • 2017
  • For evaluation of adsorption characteristics of heavy metals, precipitates were collected from stream bottom in the Dalseong mine. The removal of some heavy metals such as As, Cu, and Cd from aqueous solution is studied using a precipitates taken from acid mine drainage. The yellowish brown (Munsell color 8.75YR 5/10) and dark brown (Munsell color 2.5YR 3/8) precipitates that collected from the study area consist mainly of schwertmannite and goethite, respectively. The percentage removal or adsorption capacity of metals depends on the initial concentration and characteristics of adsorbent. Removal efficiency of the adsorbents shows the order for metal ions of As > Cu > Cd. The adsorption efficiency by absorbent of precipitates in low concentration metal aqueous solution were observed 67.00-85.00% for As, 26.24-29.08% for Cd, and 7.67-12.82% for Cu. As the initial concentration of metal ions was increased from 1 to 10 mg/L, adsorption amount of adsorbent increased from 0.29 to 1.29 mg/g of Cu of schwertmannite, and from 0.24 to 1.97 mg/g of goethite.

Changes of Mineralogical Characteristics of Precipitates in Acid Mine Drainage of the Dalsung Mine and Related Changes of Trace Elements (달성광산 산성광산배수 침전물의 시간에 따른 광물상 특성 변화 및 이에 따른 미량원소의 거동 변화)

  • Yoon, Young Jin;Kim, Yeongkyoo;Lee, Seong-joo
    • Economic and Environmental Geology
    • /
    • v.55 no.5
    • /
    • pp.531-540
    • /
    • 2022
  • Various iron minerals that precipitate in acid mine drainage have a great influence on the concentration change and mobility of trace elements in the drainage during phase transition to other minerals as well as the precipitation process. This study investigated the change of mineral properties and the behaviors of trace elements influenced by pH and time for the precipitates collected from the acid mine drainage treatment system of the Dalsung mine, where schwertmannite is mainly precipitated. However, the main mineral precipitated in the drainage was goethite, suggesting schwetmannite has already undergone a phase transition to goethite to some extent, and it was observed that at higher pH, the peak width at half maximum of XRD peak was narrower. This can be interpreted as the transformation of small amount of amorphous schwetmannite to goethite or an increase in the crystallinity of goethite, and it showed that the higher the pH, the greater this change was. The concentration of Fe was also greatly affected by the pH values, and as the pH increased, the concentration of Fe in the drainage decreased. With increasing time, the Fe concentration increased and then decreased, which can be interpreted to indicate the dissolution of schwertmannite and precipitation of goethite. This mineral change probably resulted in the rapid increase of the concentration of S at initial stage, but its concentration was stabilized later. The concentration of S is also related to the stability of schwetmannite, showing a high concentration at a low pH at which schwertmannite is stable and a low concentration at a high pH at which goethite is stable. The trace elements present as cations in the drainage also showed a close relationship with the pH, generally the lower the pH, the higher the concentration, due to the solubility changes by the pH, and the precipitation and the changes in mineral surface charge at high pH. On the other hand, in the case of As, existing as an anion, although it showed a high concentration at low pH, its concentration increased with time at all pH values, which is probably related to the concentration of Fe which can be coprecipitated in the drainage, and the increase of As concentration with time is also considered to be related to the decrease in schwertmannite rather than the mineral surface charge.