• Title/Summary/Keyword: Schwann cell

Search Result 98, Processing Time 0.035 seconds

Intraparotid facial nerve schwannomas

  • Seo, Bommie Florence;Choi, Hyuk Joon;Seo, Kyung Jin;Jung, Sung-No
    • Archives of Craniofacial Surgery
    • /
    • v.20 no.1
    • /
    • pp.71-74
    • /
    • 2019
  • Schwannoma is a benign tumor rarely found in the head and neck and much less commonly found in the intraparotid facial nerve. It is a slow-growing encapsulated tumor originating from the Schwann cells or axonal nerve sheath. It can occur anywhere along the course of the facial nerve. Patients may present with symptoms of facial palsy, but the most common presenting symptom is an asymptomatic swelling. Diagnosis is usually difficult before surgical removal and histopathological examination. We report a rare case of intraparotid facial nerve schwannoma in a 57-year-old female who had sustained a mass of the right preauricular area for 3 years. She reported no pain or facial muscle weakness. Enhanced computed tomography findings revealed the impression of pleomorphic adenoma. However, intraoperative gross findings were not characteristic of pleomorphic adenoma, and a frozen biopsy was performed resulting in the impression of a nerve sheath tumor. We performed an extracapsular surgical excision without parotidectomy. Permanent histopathology and immunohistochemistry reports diagnosed the mass as schwannoma. There were no complications including facial palsy after surgery. No recurrence was found at 6 months after surgery.

Insulin enhances neurite extension and myelination of diabetic neuropathy neurons

  • Pham, Vuong M.;Thakor, Nitish
    • The Korean Journal of Pain
    • /
    • v.35 no.2
    • /
    • pp.160-172
    • /
    • 2022
  • Background: The authors established an in vitro model of diabetic neuropathy based on the culture system of primary neurons and Schwann cells (SCs) to mimic similar symptoms observed in in vivo models of this complication, such as impaired neurite extension and impaired myelination. The model was then utilized to investigate the effects of insulin on enhancing neurite extension and myelination of diabetic neurons. Methods: SCs and primary neurons were cultured under conditions mimicking hyperglycemia prepared by adding glucose to the basal culture medium. In a single culture, the proliferation and maturation of SCs and the neurite extension of neurons were evaluated. In a co-culture, the percentage of myelination of diabetic neurons was investigated. Insulin at different concentrations was supplemented to culture media to examine its effects on neurite extension and myelination. Results: The cells showed similar symptoms observed in in vivo models of this complication. In a single culture, hyperglycemia attenuated the proliferation and maturation of SCs, induced apoptosis, and impaired neurite extension of both sensory and motor neurons. In a co-culture of SCs and neurons, the percentage of myelinated neurites in the hyperglycemia-treated group was significantly lower than that in the control group. This impaired neurite extension and myelination was reversed by the introduction of insulin to the hyperglycemic culture media. Conclusions: Insulin may be a potential candidate for improving diabetic neuropathy. Insulin can function as a neurotrophic factor to support both neurons and SCs. Further research is needed to discover the potential of insulin in improving diabetic neuropathy.

Recurred Plexiform Schwannoma of the Foot and Ankle (족부와 족관절의 재발한 총상 신경초종)

  • Lee, Jung-Hwan;Chung, Hyung-Jin;Bae, Su-Young;Kim, Kyungil
    • Journal of the Korean Orthopaedic Association
    • /
    • v.54 no.1
    • /
    • pp.84-89
    • /
    • 2019
  • Schwannomas are benign neoplasms with a Schwann cell origin. A plexiform schwannoma is a rare variant of a schwannoma with a plexiform or multinodular growth pattern. The condition occurs mostly as a solitary lesion in the skin or subcutaneous tissue, or uncommonly located in the deep soft tissue. We report a rare case of recurred multiple plexiform schwannomas arising from the posterior tibial nerve and its branch, which was located in a deep anatomic location and accompanied by a bony deformity.

Riboflavin deficiency occurred in the broiler chicks (육용계 병아리에서 발생한 리보플라빈 결핍증)

  • Kim, Gye-Yeop
    • Korean Journal of Veterinary Research
    • /
    • v.41 no.4
    • /
    • pp.591-596
    • /
    • 2001
  • The chicks from 6 field broiler farms revealed peripheral neuropathy including leg weakness, curled toes and drooped wings. Grossly distinctive enlargements of sciatic nerve, branchial nerve and lumbar nerve were observed in the chicks. Histologically nerve lesions consisted of demyelination of myelin sheaths, Schwann cell proliferation and swelling, and interstitial edema in the peripheral nerves of all birds examined. Axonal swelling and infiltration of small lymphocytes were observed, but not a primary lesion. After treatment of riboflavin, neurological disorder was markedly recovered. From these results, it is suggested that the peripheral nerve lesions in these cases were caused by dietary riboflavin deficiency.

  • PDF

Cellular and molecular change including nerve regeneration after peripheral nerve injury (말초신경 손상 후 재생과 관련된 세포적, 분자적 변화)

  • Baek Su-Jeong;Kim Dong-Hyun;Kim Jin-Sang
    • The Journal of Korean Physical Therapy
    • /
    • v.12 no.3
    • /
    • pp.415-432
    • /
    • 2000
  • In mammals. axotomy of peripheral nerve leads to a complex. These events include swelling of cell body, disappearance of Nissl substance. Proximal and distal axon undergoes a variable deriable degree of traumatic degeneration and wallerian degeneration, respectively. Nerve injury may result in cell death or regeneration. Molecular changes include proliferation of Schwann cells, upregulation of neurotropism, neural cell adhesion molecules and cytokine. Also growth cone plays an essential role in axon guidance through interaction of cytoskeleton. We review cellular and molecular events after nerve injury and describe nerve regeneration and associated proteins.

  • PDF

Effects on Response of Nervous Tissue to Samuljetong-tang after Damaged by Taxol Treatment or Sciatic Nerve Injury (사물제통탕(四物除痛湯)이 Taxol 처리 및 좌골신경 압좌 손상 후 신경조직 변화에 미치는 영향)

  • Youn, Sung-Sik;Kim, Chul-Jung;Cho, Chung-Sik
    • The Journal of Internal Korean Medicine
    • /
    • v.33 no.2
    • /
    • pp.126-144
    • /
    • 2012
  • Background : Peripheral nerves more rapidly recover than central nerves. However, it has been known that the degree of reaction of axons of peripheral nerves is affected by distinctive characteristics of axons and environmental factors near the axons. Taxol is a widely used medicine as for ovarian, breast, lung and gastric cancer. However it causes patients difficulties under treatment due to its toxic and side effects, which include persistent pain. Objectives : This study reviewed how SJT extract in vitro and in vivo affects nerve tissues of a sciatic nerve damaged by Taxol. It also studied how SJT extract in vivo affects axons of the sciatic nerve after the sciatic nerve was damaged by pressing. Methods : After vehicle, Taxol, and Taxol plus SJT were treated respectively for tissue of the sciatic nerve in vitro and then tissues were observed using Neurofilament 200, Hoechst, ${\beta}$-tubulin, $S100{\beta}$, caspase-3 and anti-cdc2. SJT was also oral medicated by injecting Taxol into the sciatic nerve of in vivo rats. Tissues of the sciatic nerve and axons of DRG sensory nerves were then observed using Neurofilament 200, Hoechst, ${\beta}$-tubulin, $S100{\beta}$, caspase-3 and p-Erk1/2. After inflicting pressing damage to the sciatic nerve of in vivo rats, tissues of the sciatic nerve and DRG sensory nerve were observed using Neurofilament 200, Hoechst, $S100{\beta}$, caspase-3, anti-cdc2, phospho-vimentin, ${\beta}1$-integrin, Dil reverse tracking and p-Erk1/2. Results : The group of in vitro Taxol plus SJT treatment had meaningful effects after sciatic nerve tissue was damaged by Taxol. The group of in vivo SJT treatment had effects of regenerating Schwann cells and axons which were damaged by Taxol treatment. The group of in vivo SJT had effects of regenerating axons in damaged areas after the sciatic nerve was damaged by pressing, and also had variations of distribution in Schwann cells at DRG sensory nerves and axons. Conclusions : This study confirmed that SJT treatment is effective for growth of axons in the sciatic nerve tissues and improvement of Schwann cells after axons of the sciatic nerve tissues was damaged. After tissues of sciatic nerve was damaged by pressing in vivo, SJT treatment had effects on promoting regeneration of axon in the damaged area and reactional capabilities in axons of DRG sensory nerves.

Growth Promoting Effects of Oriental Medicinal Drugs on Sciatic Nerve Regeneration in the Rat

  • Jo Hyun-Kyung;NamGung Uk;Seol In-Chan;Kim Yoon-Sik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.6
    • /
    • pp.1666-1672
    • /
    • 2005
  • Oriental medicinal drugs have a broad spectrum of clinical use for the cure of nervous system diseases including brain ischemic damages or neuropathies. Yet, specific drugs or drug components used in the oriental medicine in relation to none fiber regeneration are not known. In the present study, possible growth promoting effects of oriental medicinal drugs were investigated in the injured sciatic nerve system in the rat. By immunofluorescence staining, we found that Jahageo (JHG, Hominis placenta) increased Induction levels of axonal growth associated protein GAP-43 in the rat sciatic none. Small growth promoting activity was found in Golsebo (GSB, Drynariae rhizoma) and Baikhasuo (BHSO, Polygoni multiflori radix) drugs. JHG also increased cell cycle protein Cdc2 levels in the injured area of the sciatic nerves. Immunofluorescence staining indicated that induced Cdc2 protein was mostly localized in the Schwann cells in the injury area, implying that JHG activity might be related to increased Schwann cell proliferation during axonal regeneration. Moreover, levels of phospho-extracellular signal-regulated (ERK) pathway in the injured neNes were elevated by JHG treatment while levels of total ERK were unaltered. In vivo measurement of axonal regeneration using retrograde tracer showed that JHG, GSB and BHSO significantly enhanced Dil-labeled regenerating motor neurons compared with saline control. The present data suggest that oriental medicinal drugs such as JHG, GSB, and BHSO may be a useful target for developing specific drugs of axonal regeneration.

The Study on Regenerative Effects of Ginseng on Injured Axonal and Non-Neuronal cell

  • Lim, Chang-Bum;Oh, Min-Seok
    • The Journal of Korean Medicine
    • /
    • v.29 no.5
    • /
    • pp.14-28
    • /
    • 2008
  • Objective : This study was carried out to understand effects of ginseng(hearinafter ; GS, Panax Ginseng) extract on regeneration responses on injured sciatic nerves in rats. Methods :Using white mouse, we damaged sciatic nerve & central nerve, and then applied GS to the lesion. Then we observed regeneration of axon and non-neuron. Results : 1. NF-200 protein immunostaining for the visualization of axons showed more distal elongation of sciatic nerve axons in GS-treated group than saline-treated control 3 and 7 days after crush injury. 2. GAP-43 protein was increased in the injured sciatic nerve and further increased by GS treatment. Enhanced GAP-43 protein signals were also observed in DRG prepared from the rats given nerve injury and GS treatment. 3. GS treatment in vivo induced enhanced neurite outgrowth in preconditioned DRG sensory neurons. In vitro treatment of GS on sensory neurons from intact DRG also caused increased neurite outgrowth. 4. Phospho-Erk1/2 protein levels were higher in the injured nerve treated with GS than saline. Phospho-Erk1/2 protein signals were mostly found in the axons in the injured nerve. 5. NGF and Cdc2 protein levels showed slight increases in the injured nerves of GS-treated group compared to saline-treated group. 6. The number of Schwann cell population was significantly increased by GS treatment in the injured sciatic nerve. GS treatment with cultured Schwann cells increased proliferation and Cdc2 protein signals. 7. GS pretreatment into the injured spinal cord generated increased astrocyte proliferation and oligodendrocytes in culture. In vitro treatment of GS resulted in more differentiated pericytoplasmic processes compared with saline treatment. 8. More arborization around the injury cavity and the occurrence at the caudal region of CST axons were observed in GS-treated group than in saline-treated group. Conclusion :GS extract may have the growth-promoting activity on regenerating axons in both peripheral and central nervous systems.

  • PDF

A Case of Granular Cell Tumor in the Area of Arytenoid Cartilage (피열연골 부위에 발생한 과립세포종 1례)

  • Sun Dong-Il;Hwang Sung-Jae;Kim Hong-Rae;Kim Min-Sik
    • Korean Journal of Bronchoesophagology
    • /
    • v.11 no.1
    • /
    • pp.28-31
    • /
    • 2005
  • Granular cell tumors are relatively uncommon benign laryngeal lesions thought to originate form Schwann cells. The granular cell tumor occurs everywhere in the body, especially in the head and neck. The larynx is relatively an uncommon location, accounting for approximately 3 to $10\%$ of all reported cases. Typically the most common presenting symptom is hoarseness, with some patients also presenting stridor, hemoptysis, dysphagia, and otlagia. But the tumor may be asymptomatic and discovered only incidentally during a routine examination. The diagnosis of granular cell honor can be confirmed by histopathologically and immunocytochemical staining fer S-100 antigen. Treatment of a granular cell tumor consists of a wide local excision by the endoscopic, transoral or laryngofissure methods. Recently, CO2 laser has been used to remove granular cell tumor with clear resection margin. This article describes one such case in a 62-year-old man, followed by a brief review of the literature on this subject.

  • PDF

Morphometric Study on Regeneration of Vascularized Nerve Graft (혈행화 신경이식 후 신경재생에 대한 형태계측학적 연구)

  • Tark, Kwan-Chul;Ahn, Sung-Jun;Kim, Dae-Yong;Lee, Young-Ho
    • Archives of Reconstructive Microsurgery
    • /
    • v.6 no.1
    • /
    • pp.9-28
    • /
    • 1997
  • Adequate vascularization is pivotally essential for a successful nerve graft. Theoretically, the immediate vascularization will inhibit fibroblast infiltration and stimulate nerve cell regeneration. In this study, histomorphological and electrophysiological studies were performed to determine if vascularized grafts are functionally superior. In rat model, a 4cm segment of the sciatic nerve was obtained and placed as a non vascularized graft on one side, and as a vascularized graft connected to the inferior gluteal vessels on the opposite side. To determine the compound action potential of the gastrocnemius muscle, electromyography was done after 2, 3 and 4 months. Histomorphologically, the distribution of myelinated nerve fibers and Schwann cell were evaluated after toluidine blue staining, The following resutls were obtained: 1. The electrophysiological studies showed no difference between the nonvascularized and vascularized grafts. 2. Two and three months after grafting, myelinated nerve fibers were more abundant in the vascularized proximal, middle and distal areas in all nerve fibers of varying diameters. 3. In the post-nonvascularized graft 2-month group, a few myelinated nerve fibers were present in the proximal and middle areas, but none distally. In the post-vascularized graft 2 month group, myelinated nerve fibers ranging $2-8{\mu}m$ were present in all three areas. 4. In the post-nonvascularized graft 3 month group, a few myelinated nerve fibers ranging in $2-6{\mu}m$ were present in all three areas, but in the post-vascularized graft 3 month group, many myelinated nerve fibers ranging in $2-10{\mu}m$ were present in all three areas. 5. In the post-graft 4-month group, more myelinated nerve fibers were present in all three areas of the vascularized grafts. However, nerve fibers of less than $2{\mu}m$ in diameter were more abundant in the non vascularized grafts. 6. Schwann cells were more abundant in the proximal, middle and distal areas of the post-vascularized 2, 3 and 4-month grafts. Based on these findings, the immediate restoration of circulation in vascularized nerve grafts allows for the increased number of surviving Schwann cells, rapid healing of the axon and myelin sheath changes which occur during Wallerian degeneration, and thus is able to stimulate a morphologically optimal regeneration.

  • PDF