• Title/Summary/Keyword: School illumination quality

Search Result 51, Processing Time 0.024 seconds

Multi-Channel Vision System for On-Line Quantification of Appearance Quality Factors of Apple

  • Lee, Soo Hee;Noh, Sang Ha
    • Agricultural and Biosystems Engineering
    • /
    • v.1 no.2
    • /
    • pp.106-110
    • /
    • 2000
  • An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images. 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc. A total of seven images, that is, one color image form the top of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filtered image and the other is 970 nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results with Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defect and shape were 95.3%, 86% and 88.6%, respectively. Grading time was 0.35 second per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.

  • PDF

MULTI-CHANNEL VISION SYSTEM FOR ON-LINE QUANTIFICATION OF APPEARANCE QUALITY FACTORS OF APPLE

  • Lee, S. H.;S. H. Noh
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.551-559
    • /
    • 2000
  • An integrated on-line inspection system was constructed with seven cameras, half mirrors to split images, 720 nm and 970 nm band pass filters, illumination chamber having several tungsten-halogen lamps, one main computer, one color frame grabber, two 4-channel multiplexors, and flat plate conveyer, etc., so that a total of seven images, that is, one color image from the top side of an apple and two B/W images from each side (top, right and left) could be captured and displayed on a computer monitor through the multiplexor. One of the two B/W images captured from each side is 720nm filter image and the other is 970nm. With this system an on-line grading software was developed to evaluate appearance quality. On-line test results to the Fuji apples that were manually fed on the conveyer showed that grading accuracies of the color, defective and shape were 95.3%, 86% and 91%, respectively. Grading time was 0.35 sec per apple on an average. Therefore, this on-line grading system could be used for inspection of the final products produced from an apple sorting system.

  • PDF

Analysis of a Night Illuminance Distribution in School Buildings (학교 건축물의 야간 조도분포 분석)

  • 박동화;성낙진;신재화;이병기
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.6
    • /
    • pp.48-53
    • /
    • 1996
  • In this paper, the illuminance of elementary, junior, and senior high school in Inchon was measured and analyzed to investigate their night illuminating circumstances(classrooms, science rooms, and laboratories). More than four schools were selected based on the years elapsed(l0, 20, and 30 years, etc) since the opening of the schools. It was shown that the average illuminance for the classroom and that for science room and laboratory have been improved significantly such that the former was 235.6[lx] (260[lx] for senior high school, 208[lx] for junior high school, 203[lx]) for elementary school) and the latter was 233.7[lx](248.8[lx] for senior high school, 216.4[lx] for junior high school, 207.8[lx] for elementary school). The uniformity of the illuminance was exceedingly worse than the recommended one(the average value for the classroom and that for sciense room and laboratory were 0.95 and 1.08, respectively). It was found that the maximum to minimum illuminance ratio with respect to illumination derivative(7.9 for classroom, 6.8 for scienceroom or laboratory) was very high for most school buildings and was much higher for the old ones. From the measured results, it was shown that the illuminance for the school buildings needs to be improved with regard to quality.

  • PDF

Response of Leaf Pigment and Chlorophyll Fluorescence to Light Quality in Soybean (Glycine max Merr. var Seoritae) (콩의 광질에 대한 엽 색소 및 엽록소 형광반응 연구)

  • Park, Sei-Joon;Kim, Do-Yun;Yoo, Sung-Yung;Kim, Hyun-Hee;Ko, Tae-Seok;Shim, Myong-Yong;Park, So-Hyun;Yang, Ji-A;Eom, Ki-Cheol;Hong, Sun-Hee;Kim, Tae-Wan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.3
    • /
    • pp.400-406
    • /
    • 2010
  • Etiolation of plant leaves evoke to be photosynthetically inactive because plant leaves are unable to convert photochlorophyllide to chlorophyllide in the absence of light. In addition, UV-B radiation plays an important role in photomorphogenesis and excessive UV-B radiation decreases photosynthesis and causes to damage to cellular DNA. In the present study, two electrical lights obtained with the ultraviolet lamp and moderate lamp were employed to young plants soybean (Glycine max Merr. var Seoritae). After treatment of different lights, young plants were harvested for the determination of pigment contents and chlorophyll fluorescence. The contents of carotenoids and anthocyanins were significantly enhanced with the excessive UV-B radiation. Excessive UV-B light reduced dramatically photosynthetic efficiency causing an irreversible damage on PSII in comparison to the controls treated under normal illumination. As the treatment of normal illumination after dark treatment, the contents of carotenoids and anthocyanains were not changed in the leaves and photosynthetic ability were retained. Therefore, Seoritae soybean leaves might protect themselves from excessive UV-B radiation with up-regulation of antioxidants.

Bias-Dependent Photoluminescence Analysis on InGaN/GaN MQW Solar Cells

  • Shim, Jae-Phil;Jeong, Hoonil;Choi, Sang-Bae;Song, Young Ho;Jho, Young-Dahl;Lee, Dong-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.347-348
    • /
    • 2013
  • To obtain high conversion efficiency in InGaN-based solar cells, it is critical to grow high indium (In) composed InGaN layer for increasing sun light absorption wavelength rage. At present, most InGaN-based solar cells adopt InGaN/GaN multi-quantum-well (MQW) structure for high crystalline quality of InGaN with high In composition. In this study, we fabricated and compared the performances of two types of InGaN/GaN MQW solar cells which have the 15% (SC 15) and 25% (SC 25) of In composition at quantum well layer. Although both devices showed similar dark current density and leakage current, SC 15 showed better performance under AM 1.5G illumination as shown in Fig. 1. It is interesting to note that SC 25 showed severe current density decrease as increasing voltages. As a result, it lowered short circuit current density and fill factor of the device. However, SC 15 showed steady current density and over 75 % of fill factor. To investigate these differencesmore clearly, we analyzed their photoluminescence (PL) spectra under various applied voltages as shown in Fig. 2. At the same time, photocurrent, which was generated by PL excitation, was also measured as shown in Fig. 3. Further, we investigated the relationship between piezoelectric field and performance of InGaN based solar cell varying indium composition.

  • PDF

3D Measurement System of Wire for Automatic Pull Test of Wire Bonding (Wire bonding 자동 전단력 검사를 위한 wire의 3차원 위치 측정 시스템 개발)

  • Ko, Kuk Won;Kim, Dong Hyun;Lee, Jiyeon;Lee, Sangjoon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.12
    • /
    • pp.1130-1135
    • /
    • 2015
  • The bond pull test is the most widely used technique for the evaluation and control of wire bond quality. The wire being tested is pulled upward until the wire or bond to the die or substrate breaks. The inspector test strength of wire by manually and it takes around 3 minutes to perform the test. In this paper, we develop a 3D vision system to measure 3D position of wire. It gives 3D position data of wire to move a hook into wires. The 3D measurement method to use here is a confocal imaging system. The conventional confocal imaging system is a spot scanning method which has a high resolution and good illumination efficiency. However, a conventional confocal systems has a disadvantage to perform XY axis scanning in order to achieve 3D data in given FOV (Field of View) through spot scanning. We propose a method to improve a parallel mode confocal system using a micro-lens and pin-hole array to remove XY scan. 2D imaging system can detect 2D location of wire and it can reduce time to measure 3D position of wire. In the experimental results, the proposed system can measure 3D position of wire with reasonable accuracy.

Classification Performance Analysis of Silicon Wafer Micro-Cracks Based on SVM (SVM 기반 실리콘 웨이퍼 마이크로크랙의 분류성능 분석)

  • Kim, Sang Yeon;Kim, Gyung Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.9
    • /
    • pp.715-721
    • /
    • 2016
  • In this paper, the classification rate of micro-cracks in silicon wafers was improved using a SVM. In case I, we investigated how feature data of micro-cracks and SVM parameters affect a classification rate. As a result, weighting vector and bias did not affect the classification rate, which was improved in case of high cost and sigmoid kernel function. Case II was performed using a more high quality image than that in case I. It was identified that learning data and input data had a large effect on the classification rate. Finally, images from cases I and II and another illumination system were used in case III. In spite of different condition images, good classification rates was achieved. Critical points for micro-crack classification improvement are SVM parameters, kernel function, clustered feature data, and experimental conditions. In the future, excellent results could be obtained through SVM parameter tuning and clustered feature data.

Noise Insensitive Focusing Index using Adaptive Weights (적응적 가중치를 이용한 노이즈에 강인한 초점값 연산자)

  • Choi, Jong-Seong;Kang, Hee;Kang, Moon-Gi
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.4
    • /
    • pp.90-96
    • /
    • 2010
  • The focusing system is an important factor to determine the imaging quality of a digital imaging system. The focusing system consist of measuring the focusing index with high frequency energy of an image and controlling the movement of the focusing lens based on the computed focusing index. The computation of the focusing index is a key aspect in implementing the focusing system and the noise of the image cause the error in the sharpness evaluation of the image. To reduce this error, the noise under the low illumination condition is considered. A noise insensitive focusing index using adaptive weights is proposed in this paper. This measure determines the sharpness of an image using the spatially adaptive weights based on the local statistics of the image and noise. Experimental results under the condition without and with the noise verify the performance of the proposed method.

Active 3D Shape Acquisition on a Smartphone (스마트폰에서의 능동적 3차원 형상 취득 기법)

  • Won, Jae-Hyun;Yoo, Jin-Woo;Park, In-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.27-34
    • /
    • 2011
  • In this paper, we propose an active 3D shape acquisition method based on photometric stereo using camera and flash on a smartphone. Two smartphones are used as the master and slave, in which the slave projects illumination from different locations while the master captures the images and processes photometric stereo algorithm to reconstruct 3D shape. In order to reduce the error, the smartphone's camera is calibrated to overcome the effect of the lens distortion and nonlinear camera sensor response. We apply 5-point algorithm to estimate the pose between smartphone cameras and then estimate lighting direction vector to run the photometric stereo algorithm. Experimental result shows that the proposed system enables us to use smartphone as a 3D camera with low cost and high quality.

A Clinical Experience of Cleft Palate Repair Using Operative Microscope: Sommerlad's Method (Sommerlad씨 술식에 따른 미세수술 술기를 이용한 구개성형술의 경험)

  • Park, Myong Chul;Shin, Seung Jun;Lee, Il Jae
    • Archives of Plastic Surgery
    • /
    • v.33 no.1
    • /
    • pp.61-66
    • /
    • 2006
  • The purpose of this study is to introduce the method of palate repair that combines minimal hard palate dissection and radical retropositiong of levator musculature, which was presented by Sommerlad. As this method presents, additional use of the operating microscope enables atraumatic and radical dissection, and it might provide more improved speech function to the patients. A total of 17 patients with cleft palate underwent Sommerlad's method from December 2003 to August 2004. The mean follow-up period was 4.5 months. The use of a microscope provided high quality variable magnification and good illumination at the operating field. Repair was carried out through incisions at the margins of cleft with mucoperiosteal flap elevation. Muscles were rearranged and repaired properly. It was unable to evaluate the improvement of speech because the patients were too young to learn meaningful speech. Average operating time including anesthetic induction time, V-tube insertion and recovery from anesthesia was 2 hours 45 minutes which was not quite different from conventional method's operating time. Oronasal fistula developed in 2 patients of them. One of them was healed spontaneously. As meticulous and radical muscle dissection was possible with Sommerlad's method, we could minimize the trauma to the muscular and neurovascluar structure. In addition, we expect better faculty of speech as a result of this method although longer follow-up time was unavailable.