• 제목/요약/키워드: School ground

검색결과 2,415건 처리시간 0.029초

TBM considerations for soft-ground tunnels

  • Rozgonyi T. G.;Kieffer D. S.;Maidl U.;Bald Cernal
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.42-51
    • /
    • 2003
  • The global demand for underground facilities has increased substantially in the past decades, and a substantial number of underground projects have had to deal with challenging ground conditions in urban environments. Particularly challenging are weak and unstable water bearing soils. Advancements in shielded TBM tech-nology have led to significant improvements regarding the ability to control ground deformations in soft ground. Nonetheless, ground collapse may occur even when the most advanced TBM designs are employed if unexpected adverse ground conditions are encountered or if insufficient stabilizing pressure is transferred to the tunnel face. This paper reviews common approaches for face stability and face pressure transmission calculations, and provides an overview of some of the latest technological developments and considerations for soft ground TBM applica-tions.

  • PDF

Seismic and collapse analysis of a UHV transmission tower-line system under cross-fault ground motions

  • Tian, Li;Bi, Wenzhe;Liu, Juncai;Dong, Xu;Xin, Aiqiang
    • Earthquakes and Structures
    • /
    • 제19권6호
    • /
    • pp.445-457
    • /
    • 2020
  • An ultra-high voltage (UHV) transmission system has the advantages of low circuitry loss, high bulk capacity and long-distance transmission capabilities over conventional transmission systems, but it is easier for this system to cross fault rupture zones and become damaged during earthquakes. This paper experimentally and numerically investigates the seismic responses and collapse failure of a UHV transmission tower-line system crossing a fault. A 1:25 reduced-scale model is constructed and tested by using shaking tables to evaluate the influence of the forward-directivity and fling-step effects on the responses of suspension-type towers. Furthermore, the collapse failure tests of the system under specific cross-fault scenarios are carried out. The corresponding finite element (FE) model is established in ABAQUS software and verified based on the Tian-Ma-Qu material model. The results reveal that the seismic responses of the transmission system under the cross-fault scenario are larger than those under the near-fault scenario, and the permanent ground displacements in the fling-step ground motions tend to magnify the seismic responses of the fault-crossing transmission system. The critical collapse peak ground acceleration (PGA), failure mode and weak position determined by the model experiment and numerical simulation are in relatively good agreement. The sequential failure of the members in Segments 4 and 5 leads to the collapse of the entire model, whereas other segments basically remain in the intact state.

학교 건물용 지열 히트펌프 시스템 설계와 지중 순환수 온도 변화 분석 (Design of Ground-Coupled Heat Pump (GCHP) System and Analysis of Ground Source Temperature Variation for School Building)

  • 손병후
    • 한국지열·수열에너지학회논문집
    • /
    • 제16권1호
    • /
    • pp.17-25
    • /
    • 2020
  • Ground-coupled heat pump (GCHP) systems have become an efficient alternative to conventional cooling and heating methods due to their higher energy using efficiency. Although some experimental and simulation works related to performance analysis of GCHP systems for commercial buildings have been done, relatively little has been reported on the performance evaluation of GCHP systems for school buildings. The purpose of this simulation study is to evaluate the performance of a hypothetical GCHP system for a school building in Seoul. We collected various data of building specifications and construction materials for the building and then modeled to calculate hourly building loads with SketchuUp and TRNSYS V17. In addition, we used GLD (Ground Loop Design) V2016, a GCHP system design and simulation software, to design the GCHP system for the building and to simulate temperature of circulating water in ground heat exchanger. The variation of entering source temperature (EST) into the system was calculated with different prediction time and then each result was compared. For 20 years of prediction time, EST for baseline design (Case A) based on the hourly simulation results were outranged from the design criteria.

지중 및 보조루프의 2차 유체 유량 분배비를 통한 하이브리드 지열히트펌프의 성능 최적화 연구 (Performance Optimization of a Hybrid Ground Source Heat Pump According to Secondary Flow Distribution Ratio between the Ground and the Supplemental Loop)

  • 이주성;박홍희;김원욱;김용찬
    • 설비공학논문집
    • /
    • 제24권2호
    • /
    • pp.102-110
    • /
    • 2012
  • The objective of this study is to improve the performance of a hybrid ground source heat pump (HGSHP) by optimizing the flow distribution ratio of secondary fluid flow rate between a ground loop and a supplemental loop. Initially, a conventional ground source heat pump (GSHP) was tested to determine an optimum flow rate of the secondary fluid. Based on the selected optimum value, the HGSHP was also tested by varying the flow distribution ratio of the secondary fluid flow rate between the ground loop and the supplemental loop, such as 9:1, 7:3, 5:5, and 3:7. The results showed that the optimum flow distribution ratio of the secondary fluid flow rate was 7:3. The COP of the HGSHP was improved by 19% over the GSHP at a flow distribution ratio of 7:3 and an entering water temperature of $40^{\circ}C$.

국내 지열원 히트펌프 유닛의 인증제도 분석을 통한 신뢰성 향상 방안 연구 (A Study on Reliability Improvement of Domestic Ground Source Heat Pump Units by Analyzing the Certification System)

  • 양찬우;강희정;오세왕;도우빈;이광호;최종웅;조용;최종민
    • 신재생에너지
    • /
    • 제19권4호
    • /
    • pp.72-83
    • /
    • 2023
  • Only ground source heat pump units certified according to the regulations in Korea can be adopted in ground source heat pump systems. In this study, domestic and international standards and regulations for ground source heat pump units were investigated. Unlike ISO 13256-1~2, which is the international standard, KS B 8292~8294 for ground source heat pump unit only included rated test conditions. Therefore, it is necessary to supplement various test conditions to the KS B series, because its performance data, which is required to calculate the system's design capacity, is dependent on the change in entering water temperature. The difference between the coefficient of performance of the certified ground source heat pump units and the certified criteria changed significantly according to the operating mode, heat source, and load type, because the criteria increased by about 5% for all. Thus, it is highly suggested that the certification standards be revised while considering the product performance level and various conditions.

Effects of PCB Ground Plane and Case on Internal WLAN Patch Antenna

  • Kim, H.T.;Heo, J.K.;Jeong, K.J.;Hwang, S.W.
    • 전기전자학회논문지
    • /
    • 제11권4호
    • /
    • pp.252-256
    • /
    • 2007
  • We demonstrate that the effect of the PCB ground length and the cover is important in the performance of 2.4 GHz patch antennas. The Center frequency in the return loss shifts as much as 0.5 GHz, when the length of the PCB ground increases from 30 to 85 mm. The position of 10-dB bandwidth accordingly shifts to lower frequency region. Finally, the resonance at 2.4 GHz becomes stronger when the top cover exists. The radiation pattern of the patch antenna is also strongly affected by the ground structure and the existence of the top cover. In both the return loss and the radiation pattern, 3-dimensional simulations are shown to be an efficient tool.

  • PDF

TFT-LCD 구동회로에서의 EMI 개선을 위한 Power/Ground Plane 모델링 및 실험적 검증 (Power/Ground Plane Modeling and Experimental Characterization for EMI Improvement in TFT-LCD Driving Circuit)

  • 조강연;나완수;이재훈;이성규
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 추계학술대회 논문집 전기물성,응용부문
    • /
    • pp.44-47
    • /
    • 2005
  • This paper presents the efficient plan for the EMI improvement from of TFT-LCD Module. It investigates the frequency characteristics of Power/Ground Plane of TFT-LCD drive circuit PCB concretely. After the frequency characteristics is reviewed, EMI improvement is tried to insert to RC termination between Power/Ground Plane and to shift resonance frequency. It is confirmed by a simulation result and RC Termination which is inserted the point where the resonance characteristics change is necessary. It applied in 19 "SXGA TFT-LCD drive circuits and the EMI improvement verification is described.

  • PDF

상수관로 파손으로 인한 지반함몰 발생메카니즘에 관한 실험적 연구 (Experimental Study on Generating mechanism of The Ground Subsidence of Due to Damaged Waters supply Pipe)

  • 김영호;김주봉;김도원;한중근
    • 한국지반신소재학회논문집
    • /
    • 제16권2호
    • /
    • pp.139-148
    • /
    • 2017
  • 상하수도관의 파손에 따라 발생하는 지반함몰은 최근 많은 도시에서 증가하고 있다. 이는 도시의 노후화에 따른 파이프라인의 노후화에 기인한다. 하수도의 파손에 따른 지반함몰특성은 최근 많은 연구들을 통해 밝혀지고 있지만, 상수도에 의한 지반함몰 특성 연구는 미진한 상태라 할 수 있다. 본 연구에서는 상수도관의 파손에 따른 매설관 상부지반의 지반함몰 발생메카니즘을 알아보기 위해 지반특성과 상수도관에서의 압력 및 속도수두에 따른 지반붕괴특성을 실내모형시험을 통해 고찰하였다. 상수도관의 매설상태를 고려하여 상대밀도와 세립토의 함유량에 따라 비교분석하였다. 상대밀도와 침투압이 작은 경우에는 소규모지반함몰이 발생할 수 있고, 반대인 경우에는 지중공동이 크게 발생하면서 일정시간이 지난 후 지표면으로 확대되어 발생하는 것을 알 수 있었다. 또한, 지중 깊은 곳에서 침투압에 의한 토사유출이 발생한 이후 형성된 지반공동은 장시간동안 지표면 부근에서 일정한 강도를 유지하고, 지반공동이 장기간 유지될 수 있음을 알 수 있었다.

Statistical Properties of Electric Fields Produced by Cloud-to-Ground Lightning Return Strokes

  • Lee, Bok-Hee;Lee, Dong-Moon;Lee, Seung-Chil;Ahn, Chang-Hwan
    • KIEE International Transactions on Electrophysics and Applications
    • /
    • 제11C권4호
    • /
    • pp.120-126
    • /
    • 2001
  • For the past five years, Inha University has been observing the electric fields produced by cloud-to-ground return strokes. This paper presents the summary of most recent results. Statistics on the zero-to-peak rise time, the zero-to-zero crossing time and the amplitude ratio of the second peak in the opposite polarity to the first peak were examined. The radiation electric fields produced by distant cloud-to-ground return strokes were substantially same pattern. The first return stroke field starts with a slowly increasing front and rises abruptly to peak. The rising portions of the electric fields produced by cloud-to-ground return strokes last 1 $mutextrm{s}$ to a few $mutextrm{s}$. The mean values of the zero-to-peak rise times of electric fields were 5.72 $mutextrm{s}$ and 4.12 $mutextrm{s}$ for the positive and the negative cloud-to-ground return strokes, respectively. The mean of the zero-to-zero crossing time for the positive return strokes was 29.48 $mutextrm{s}$ compared with 38.54 $mutextrm{s}$ for the negative return strokes. The depths of the dip after the peak of return stroke electric fields also have the dependence on the polarity of cloud-to-ground return stroke, and the mean values for the positive and negative cloud-to-ground return strokes were 33.55 and 28.19%, respectively.

  • PDF

Elastic solutions for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface

  • Wang, Ling;Zou, Jin-Feng;Yang, Tao;Wang, Feng
    • Geomechanics and Engineering
    • /
    • 제19권3호
    • /
    • pp.201-215
    • /
    • 2019
  • A new approach of analyzing the displacements and stress of the surrounding rock for shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface is investigated in this study. In the proposed approach, by using a virtual image technique, the shear stress of the vertical ground surface is revised to be zero, and elastic solutions of the surrounding rock are obtained before stress revision. To revise the vertical normal stress and shear stress of horizontal ground surface generated by the combined action of the actual and image sinks, the harmonic functions and corresponding stress function solutions were adopted. Based on the Boussinesq's solutions and integral method, the horizontal normal stress of the vertical ground surface is revised to be zero. Based on the linear superposition principle, the final solution of the displacements and stress were proposed by superimposing the solutions obtained by the virtual image technique and the stress revision on the horizontal and vertical ground surfaces. Furthermore, the ground settlements and lateral displacements of the horizontal and vertical ground surfaces are derived by the proposed approach. The proposed approach was well verified by comparing with the numerical method. The discussion based on the proposed approach in the manuscript shows that smaller horizontal ground settlements will be induced by lower tunnel buried depths and smaller limb distances. The proposed approach for the displacement and stress of the surrounding rocks can provide some practical information about the surrounding rock stability analysis of shallow tunnels excavated under non-axisymmetric displacement boundary conditions on a vertical surface.